INTEGRATION OF ARTIFICIAL INTELLIGENCE INTO PERSONNEL MANAGEMENT: A STRATEGY FOR INCREASING BUSINESS (USING THE EXAMPLE OF RUSSIAN RAILWAYS)
УДК 502.131.1:004.8
Abstract
In recent years, the implementation of artificial intelligence (AI) into companies' operational processes has become not only a relevant trend but also a necessary step to enhance their competitiveness and efficiency. The article examines the financial and organizational benefits associated with the use of AI, as well as its impact on human resources and corporate culture. The study is based on an analysis of various examples of AI implementation and highlights a significant reduction in operating expenses and an increase in labor productivity at OJSC “Russian Railways,” as demonstrated by forecast modeling based on company-provided data. It also points out issues in HR policy, including insufficient attention to employees' professional development and motivation, which leads to high staff turnover and professional burnout. The study found that implementing AI can lead to a reduction in operating expenses by 20-30%, an increase in labor productivity of up to 30%, and improved efficiency in HR departments.
Considering the current challenges in the labor market and trends toward decreasing unemployment, the adoption of AI and related programs is critically important for enhancing business efficiency and retaining key employees.
Downloads
Metrics
References
Chui M., Roberts R., Yee, L. The Economic Potential of Generative AI: The Next Frontier of Productivity. McKinsey & Company, 2023.URL: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier/ (дата обращения: 07.10.2024).
Семенихин А., Баталина Е. Искусственный интеллект в HR: Исследование «Технологии Доверия». URL: https://data.tedo.ru/publications/ai-hr-2024.pdf / (дата обращения: 07.10.2024).
Verlinden N. AI in HR: A Guide to Opportunities and Applications in HR, 2024. AIHR. URL: https://www.aihr.com/blog/ai-in-hr/ (дата обращения: 14.10.2024).
Bedar J., Lavoie K., Laverdiere R., Bailey A., Beauchene V., Baier J. How Generative AI Will Transform HR. Boston Consulting Group, 2023. URL: https://www.bcg.com/publications/2023/transforming-human-resources-using-generative-ai/ (дата обращения: 14.10.2024).
Hancock B., Schaninger B., Yee L. Generative AI and the Future of HR. McKinsey & Company, 2023. URL: https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/generative-ai-and-the-future-of-hr#/ (дата обращения: 14.10.2024).
Шведов Л. А., Ярцев П. С. Анализ проблем управления человеческими ресурсами и методов их эффективного решения на примере ОАО «РЖД» // Экономическая наука и практика: материалы VII Международной научной конференции (Краснодар, февраль 2019 г.). Краснодар, 2019. С. 26-28.
Кукалева А. С. Пути стабилизации трудового коллектива в сфере железнодорожного транспорта (на примере «Пензенский региональный центр связи г. Пенза — Самарская дирекция связи — Центральная станция связи — филиал ОАО «РЖД»). Пенза, 2020.
Люханова С. В., Солохина А. И. Стратегия развития кадрового потенциала ОАО «Российские железные дороги» // Вестник университета. 2024. № 4. С. 89-99.
Сугак С. Современный образ РЖД. URL: https://universitetrzd.ru/magazines/hr-partner-5-2020/stanislav-sugak-nachalnik-tsentra-vnutrennikh-kommunikatsiy-i-brenda-rabotodatelya-oao-rzhd-nam-vazh/?special_version=Y&ysclid=lpwuzgup6n239518430/ (дата обращения: 14.10.2024).
HeadHunter. Рынок труда в России 2023. URL: https://hr-elearning.ru/wp-content/uploads/2023/07/Rynok-truda-Rossii-v-2023.pdf/ (дата обращения: 14.10.2024).
REFERENCES
Chui M., Roberts R., Yee, L. The Economic Potential of Generative AI: The Next Frontier of Productivity. McKinsey & Company, 2023. URL: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier (date of access: 07.10.2024).
Semenikhin A. and Batalina E. Artificial Intelligence in HR: The “Technologies of Trust” Study. URL: https://data.tedo.ru/publications/ai-hr-2024.pdf/ (date of access: 07.10.2024).
Verlinden N. AI in HR: A Guide to Opportunities and Applications in HR, 2024. AIHR. URL: https://www.aihr.com/blog/ai-in-hr/ (date of access: 14.10.2024).
Bedar J., Lavoie K., Laverdiere R., Bailey A., Beauchene V., Baier J. How Generative AI Will Transform HR. Boston Consulting Group, 2023. URL: https://www.bcg.com/publications/2023/transforming-human-resources-using-generative-ai/ (date of access: 14.10.2024).
Hancock B., Schaninger B., Yee L. Generative AI and the Future of HR. McKinsey & Company, 2023. URL: https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/generative-ai-and-the-future-of-hr#/ (date of access: 14.10.2024).
Shvedov L. A.; Yartsev P. S. Analysis of Human Resource Management Issues and Methods for Their Effective Resolution: The Case of OJSC “Russian Railways”. In: Economic Science and Practice: Proceedings of the VII International Scientific Conference (Krasnodar, February 2019). Krasnodar, 2019. Pp. 26-28.
Kukaleva A. S. Ways to Stabilize the Workforce in the Railway Transport Sector (on the Example of “Penza Regional Communication Center Penza — Samara Communication Directorate — Central Communication Station — Branch of OJSC “Russian Railways' ”). Penza, 2020.
Lyukhanova S. V., Solokhina A. I. Strategy for Developing the Human Resource Potential of OJSC “Russian Railways”. University Bulletin. 2024. No. 4. Pp. 89-99.
Sugak S. The Modern Image of Russian Railways. Universitetrzd, 2020. URL: https://universitetrzd.ru/magazines/hr-partner-5-2020/stanislav-sugak-nachalnik-tsentra-vnutrennikh-kommunikatsiy-i-brenda-rabotodatelya-oao-rzhd-nam-vazh/?special_version=Y&ysclid=lpwuzgup6n239518430/ (date of access: 14.10.2024).
HeadHunter. The Labor Market in Russia 2023. HeadHunter, 2023. URL: https://hr-elearning.ru/wp-content/uploads/2023/07/Rynok-truda-Rossii-v-2023.pdf/ (date of access: 14.10.2024).
Copyright (c) 2025 Александра Денисовна Джой

This work is licensed under a Creative Commons Attribution 4.0 International License.
Economics Profession Business is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Economics Profession Business (EPB) allows authors to deposit manuscripts (currently under review or those for intended submission to EPB) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).




