Mathematical Epidemiological Models: A Comprehensive Review of Classical, Extended, Network, Spatial and Frractional Approaches

  • N.O. Aburas Алтайский государственный университет Email: n.aburas@zu.edu.ly
  • E.D. Rodionov Алтайский государственный университет Email: edr2002@mail.ru
Ключевые слова: epidemic models, basic reproduction number, fractional order, analytical epidemiology

Аннотация

A methodical framework for characterizing, evaluating, and predicting the spread of infectious diseases is provided by mathematical epidemiological models. In addition to discussing the historical origins of epidemic modeling, this work presents popular models including SIS, SIR, SIRS, SEIR, SEIRD, SEIRV, and SEAIHRD formulations in a logical manner. We outline the mathematical formulas, compartmental organization, interpretation, and common applications for each model. We also examine reaction-diffusion (spatial) models that represent geographic dissemination and network-based models that capture numerous interactions. Particular attention is paid to the basic reproduction number R0 and its computation utilizing the next-generation matrix technique.

Литература

1. United States. Public Health Service. Office of the Surgeon General. Report on Regional Medical Programs to the President and the Congress: Submitted by William H. Stewart, Surgeon General, Public Health Service. – Washington: US Government Printing Office, 1967. – N 1690.
2. Kukkonen T. Tilling the Field of Rural Arts Education in Canada: The Role of Intermediary Organizations in Brokering and Supporting Partnerships: Ph.D. diss / Kukkonen T. ; Queen’s University (Canada). — Kingston, 2021.
3. Bernoulli D. Essai d’une nouvelle analyse de la mortalit´e caus´ee par la petite v´erole, et des avantages de l’inoculation pour la pr´evenir. – 1760.
4. Qian L.Y., Wu J., Ye D.Q. The father of clinical epidemiology: Pierre Charles Alexandre Louis // Chinese Journal of Disease Control & Prevention. – 2018. – Vol.22, no.1. –
P. 94–96.
5. Pastor-Satorras R., Vespignani A. Epidemic spreading in scale-free networks // Physical Review Letters. – 2001. – Vol.86, no.14. – P. 3200–3203.
6. Murray J.D. Mathematical Biology II: Spatial Models and Biomedical Applications. – Berlin; Heidelberg: Springer, 2003.
7. Hethcote H.W. The mathematics of infectious diseases // SIAM Review. – 2000. – Vol. 42, no. 4. – P. 599–653.
8. Sameni R. Mathematical modeling of epidemic diseases; a case study of the COVID-19 coronavirus. – 2020.
9. Aoki K. Short history of epidemiology for noninfectious diseases in Japan. Part 1: selected diseases and related episodes from 1880 through 1944 // J. Epidemiol. – 2007. – Vol.17, no.1. – P. 1–18.
10. Ravel V., Pandiyan C., Chandran K. Ignaz Philipp Semmelweis (1818–1865) – a public health visionary and champion of hand hygiene // GMS Hyg Infect Control. – 2025. – Vol.20.
11. Ross R. The Prevention of Malaria. – London: John Murray, 1911.
12. Kingsland S.and Alfred J. Lotka and the origins of theoretical population ecology // Proc Natl Acad Sci U S A. – 2015. – Vol.112, no.31. – P. 9493–9495.
13. Kermack W.O., McKendrick A.G. A contribution to the mathematical theory of epidemics // Proceedings of the Royal Society A. – 1927. – Vol.115, no.772. – P. 700–721.
14. Anderson R.M., May R.M. Infectious Diseases of Humans: Dynamics and Control. – Oxford: Oxford University Press, 1991.
15. Keeling M.J., Eames K.T.D. Networks and epidemic models // Journal of the Royal Society Interface. – 2005. – Vol.2, no.4. – P. 295–307.
16. van den Driessche P., Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission // Mathematical Biosciences. – 2002. – Vol.180. – P. 29–48.
17. Diekmann O., Heesterbeek J.A.P., Roberts M.G. The construction of next-generation matrices for compartmental epidemic models // Journal of the Royal Society Interface. – 2010. – Vol.7, no.47. – P. 873–885.
Опубликован
2025-12-25
Как цитировать
Aburas N., Rodionov E. Mathematical Epidemiological Models: A Comprehensive Review of Classical, Extended, Network, Spatial and Frractional Approaches // Труды семинара по геометрии и математическому моделированию, 2025, № 11. С. 73-87. URL: https://journal.asu.ru/psgmm/article/view/18612.