Abstract
Cellulose is the most abundant natural biopolymer. This polysaccharide is widely used in various fields such as pharmaceuticals, medicine, and industry, which is partly due to its high availability, low cost, and exceptional mechanical properties, particularly high Young's modulus. The mechanical and physicochemical properties of cellulose are determined by its supramolecular and morphological structure, specifically the perfection of its amorphous-crystalline state. The relative content of crystalline material in cellulose is described by the crystallinity index (degree of crystallinity). In this work, the crystallinity indices of previously studied cellulose samples and hydrogel derived from powdered cellulose were calculated using the modified Ruland method. The scattering pattern of the latter is atypical and is not fully described by theoretical models.
References
2. Казаков Я.В., Казакова О. Я., Манахова Т. Н., Малков А. В. Определение упругих констант целлюлозно-бумажных материалов при растяжении в плоскости листа // Заводская лаборатория. Диагностика материалов. – 2015. – Т. 81, № 8. – С. 53-58.
3. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., Johnson, D. K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance // Biotechnology for Biofuels. 2010. Vol. 3, no. 10. P. 1-10. DOI: https://doi.org/10.1186/1754-6834-3-10.
4. Klemm, D., Heublein, B., Fink, H.-P., Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material // Angewandte Chemie International Edition. 2005. Vol. 44, no. 22. P. 3358-3393. DOI: https://doi.org/10.1002/anie.200460587.
5. French, A. D. Idealized powder diffraction patterns for cellulose polymorphs // Carbohydrate Polymers. 2014. Vol. 112. P. 439-444. DOI: https://doi.org/10.1016/j.carbpol.2014.04.027.
6. Nishiyama, Y., Langan, P., Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction // Journal of the American Chemical Society. 2002. Vol. 124, no. 31. P. 9074-9082. DOI: 10.1021/ja0257319.
7. O'Sullivan, A. C. Cellulose: the structure slowly unravels // Progress in Polymer Science. 1997. Vol. 22, no. 1. P. 151-207. DOI: 10.1016/S0079-6700(96)00010-5.
8. Medronho, B., Romano, A., Miguel, M. G., Stigsson, L., Lindman, B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions // Carbohydrate Polymers. 2012. Vol. 87, no. 2. P. 1079-1096. DOI: https://doi.org/10.1016/j.carbpol.2012.04.043.
9. Habibi, Y., Lucia, L. A., Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications // Chemical Reviews. 2010. Vol. 110, no. 6. P. 3479-3500. DOI: https://doi.org/10.1021/cr900339w.
10. Saurov S.K., Svedström K., Kotelnikova N. Comparative study of powder celluloses and cellulose hydrogels by WAXS method. Impact of measurement technique and computation on variability of results // Cellulose Chem. Technol. – 2019. – Vol. 53, No. 9-10. – P. 885-896. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2019.53.86
11. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., Johnson, D. K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance // Biotechnology for Biofuels. 2010. Vol. 3, no. 10. P. 1-10. DOI: https://doi.org/10.1186/1754-6834-3-10.
12. French, A. D. Increment in evolution of cellulose crystallinity analysis // Cellulose. 2020. Vol. 27. P. 5445-5448. DOI: https://doi.org/10.1007/s10570-020-03172-z.
13. Прусский А. И., Алешина Л. А. Рентгеновские исследования целлюлозы хлопка и льна в различных состояниях // Структура и физико-химические свойства целлюлоз и нанокомпозитов на их основе / под ред. Л. А. Алешиной, В. А. Гуртова, Н. В. Мелех. Петрозаводск: Изд-во ПетрГУ, 2014. С. 98-133.
14. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., Johnson, D. K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance // Biotechnology for Biofuels. 2010. Vol. 3, no. 10. P. 1-10. DOI: https://doi.org/10.1186/1754-6834-3-10.
15. Щербакова Т.П., Котельникова Н. Е., Быховцева Ю. В. Сравнительное изучение образцов порошковой и микрокристаллической целлюлозы различного природного происхождения. Физико-химические характеристики // Химия растительного сырья. 2011. №3. C. 33–42.
16. Котельникова Н.Е., Михаилиди А.М., Мартакова Ю.В. Получение целлюлозных гидрогелей при самоорганизации из растворов в ДМАА/LiCl и их свойства // Высокомолекулярные соединения. Серия А, 2017, том 59, № 1, с. 63–75. DOI: https://doi.org/10.7868/S2308112017010084.
17. Прусский А. И., Алешина Л. А. Компьютерное моделирование атомной структуры регенерированной целлюлозы // Высокомолекулярные соединения А. 2016. Т. 58. № 3. С. 268-281. https://doi.org/10.7868/S2308112016030147
Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
We allows authors to deposit manuscripts (currently under review or those for intended submission to ABS) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).