Аннотация
Целлюлоза является наиболее распространённым природным биополимером. Этот полисахарид широко применяется в различных отраслях – фармацевтике, медицине, промышленности, что частично обусловлено высокой доступностью целлюлозы, низкой стоимостью и исключительными механическими свойствами, в частности, высоким модулем Юнга. Механические и физико-химические свойства целлюлозы определяются ее надмолекулярной и морфологической структурой, а именно, совершенством ее аморфно-кристаллического состояния. Относительное содержание кристаллического материала в целлюлозе описывается индексом (степенью) кристалличности (СК). В данной работе с использованием модифицированного метода Руланда проведен расчёт СК изученных ранее образцов целлюлозы, а также гидрогеля, выделенного из порошковой целлюлозы, чья картина рассеяния нетипична и полностью не описывается теоретическими моделями.
Литература
2. Казаков Я.В., Казакова О. Я., Манахова Т. Н., Малков А. В. Определение упругих констант целлюлозно-бумажных материалов при растяжении в плоскости листа // Заводская лаборатория. Диагностика материалов. – 2015. – Т. 81, № 8. – С. 53-58.
3. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., Johnson, D. K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance // Biotechnology for Biofuels. 2010. Vol. 3, no. 10. P. 1-10. DOI: https://doi.org/10.1186/1754-6834-3-10.
4. Klemm, D., Heublein, B., Fink, H.-P., Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material // Angewandte Chemie International Edition. 2005. Vol. 44, no. 22. P. 3358-3393. DOI: https://doi.org/10.1002/anie.200460587.
5. French, A. D. Idealized powder diffraction patterns for cellulose polymorphs // Carbohydrate Polymers. 2014. Vol. 112. P. 439-444. DOI: https://doi.org/10.1016/j.carbpol.2014.04.027.
6. Nishiyama, Y., Langan, P., Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction // Journal of the American Chemical Society. 2002. Vol. 124, no. 31. P. 9074-9082. DOI: 10.1021/ja0257319.
7. O'Sullivan, A. C. Cellulose: the structure slowly unravels // Progress in Polymer Science. 1997. Vol. 22, no. 1. P. 151-207. DOI: 10.1016/S0079-6700(96)00010-5.
8. Medronho, B., Romano, A., Miguel, M. G., Stigsson, L., Lindman, B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions // Carbohydrate Polymers. 2012. Vol. 87, no. 2. P. 1079-1096. DOI: https://doi.org/10.1016/j.carbpol.2012.04.043.
9. Habibi, Y., Lucia, L. A., Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications // Chemical Reviews. 2010. Vol. 110, no. 6. P. 3479-3500. DOI: https://doi.org/10.1021/cr900339w.
10. Saurov S.K., Svedström K., Kotelnikova N. Comparative study of powder celluloses and cellulose hydrogels by WAXS method. Impact of measurement technique and computation on variability of results // Cellulose Chem. Technol. – 2019. – Vol. 53, No. 9-10. – P. 885-896. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2019.53.86
11. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., Johnson, D. K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance // Biotechnology for Biofuels. 2010. Vol. 3, no. 10. P. 1-10. DOI: https://doi.org/10.1186/1754-6834-3-10.
12. French, A. D. Increment in evolution of cellulose crystallinity analysis // Cellulose. 2020. Vol. 27. P. 5445-5448. DOI: https://doi.org/10.1007/s10570-020-03172-z.
13. Прусский А. И., Алешина Л. А. Рентгеновские исследования целлюлозы хлопка и льна в различных состояниях // Структура и физико-химические свойства целлюлоз и нанокомпозитов на их основе / под ред. Л. А. Алешиной, В. А. Гуртова, Н. В. Мелех. Петрозаводск: Изд-во ПетрГУ, 2014. С. 98-133.
14. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., Johnson, D. K. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance // Biotechnology for Biofuels. 2010. Vol. 3, no. 10. P. 1-10. DOI: https://doi.org/10.1186/1754-6834-3-10.
15. Щербакова Т.П., Котельникова Н. Е., Быховцева Ю. В. Сравнительное изучение образцов порошковой и микрокристаллической целлюлозы различного природного происхождения. Физико-химические характеристики // Химия растительного сырья. 2011. №3. C. 33–42.
16. Котельникова Н.Е., Михаилиди А.М., Мартакова Ю.В. Получение целлюлозных гидрогелей при самоорганизации из растворов в ДМАА/LiCl и их свойства // Высокомолекулярные соединения. Серия А, 2017, том 59, № 1, с. 63–75. DOI: https://doi.org/10.7868/S2308112017010084.
17. Прусский А. И., Алешина Л. А. Компьютерное моделирование атомной структуры регенерированной целлюлозы // Высокомолекулярные соединения А. 2016. Т. 58. № 3. С. 268-281. https://doi.org/10.7868/S2308112016030147
Авторы, публикующиеся в данном издании, соглашаются со следующими условиями:
a. Авторы сохраняют за собой права на авторство своей работы и предоставляют изданию право первой публикации этой работы с правом после публикации распространять работу на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылокой на авторов оригинальной работы и оригинальную публикацию в этом журнале.
b. Авторы сохраняют право заключать отдельные договора на неэксклюзивное распространение работы в том виде, в котором она была опубликована этим изданием (например, размещать работу в электронном архиве учреждения или публиковать в составе монографии), с условием сохраниения ссылки на оригинальную публикацию в этом издании
с. Политика издания разрешает и поощряет размещение авторами в сети Интернет (например в институтском хранилище или на персональном сайте) рукописи работы как до ее подачи в редакцию, так и во время ее редакционной обработки, так как это способствует продуктивной научной дискуссии и положительно сказывается на оперативности и динамике цитирования статьи (The Effect of Open Access)