TRACE ELEMENT COMPOSITION OF PLANTS AS A COMPONENT OF SPECIES-SPECIFIC HOMEOSTASIS

Keywords

gene systematics
molecular genetic analysis
APGIV
Boraginaceae
trace element status
hierarchical clustering

How to Cite

Kruglov D. TRACE ELEMENT COMPOSITION OF PLANTS AS A COMPONENT OF SPECIES-SPECIFIC HOMEOSTASIS // BIOAsia-Altai, 2024. Vol. 4, № 1. P. 317-319. URL: http://journal.asu.ru/bioasia/article/view/16353.

Abstract

Today plant taxonomy has moved from morphological characters for dividing plants to the way offered by Angiosperm phylogeny group - APG system, which is based on genetic characters that are used to creating phylogenetic relationships. This is based on the analysis of DNA sequences of chloroplast genes and the gene encoding ribosomes. On the other hand, the trace element composition of plants also has prognostic significance for plant chemosystematics. Due to the fact that the absorption of trace elements from the soil occurs using proteins carrier, whose composition is naturally also determined by genes, one can expect a correlation between the phylogenetic tree and the tree of trace element status constructed using hierarchical clustering. The purpose of this work was to verify the hypothesis presented. The subjects of the study were the above-ground parts of plants of the Boraginaceae family, Pulmonaria mollis Wulf. ex Horn., Pulmonaria obscura Dum., Nonea rossica Stev. Onosma arenaria Waldst. et Kit., Onosma simplissima L., Ehium vulgare L., Brunnera sibirica Stev. and Lithospermum officinale L., collected in the flowering phase in different years and in the most typical places of their habitats. Quantitative determination of elements was carried out by mass spectrometry with inductively coupled plasma. Hierarchical clustering was used with cluster formation using the Ward method to analyze the data. Analysis of the constructed hierarchical tree showed that the distribution of plants into clusters correlates with their distribution in the APGIV system. We established that the distribution of plants according to the status of trace elements correlates with the distribution obtained using molecular genetic analysis.

References

1. Гельтман Д. В. Современные системы цветковых растений // Ботанический журнал. 2019, том 104, № 4, с. 503-527. https://doi.org/10.1134/S0006813619040045

2. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV// The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 181: 1–20. https://doi.org/10.1111/boj.12385

3. Круглов Д. С. Прогностическая применимость микро элементного профиля растений для задач систематики // Ботаника в современном мире. Труды Русского ботанического общества Т. 1: Систематика высших растений.
Флористика и география растений. Охрана растительного мира. Палеоботаника. Ботаническое образование. - Махачкала: АЛЕФ, 2018. - с.58-60

4. Murtagh F, Legendre P. Ward’s hierarchical clustering method: clustering criterion and agglomerative algorithm // Journal of Classification. 2014, 31(3), pp. 274–295

5. Chacon Ju., Luebert F., Hilger H.H., Ovchinnikova S., Selvi F., Cecchi L., Guilliams C.M., Hasenstab-Lehman K., Sutory K., Simpson M.G., Weigend M. The borage family (Boraginaceae s.str.): A revised infrafamilial classification based on new phylogenetic evidence, with emphasis on the placement of some enigmatic genera // Taxon 2016. 65 (3): 523-546. https://doi.org/10.12705/653.6
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.