Abstract
Karyologists estimate that 30 to 80% of plant species have polyploid genomes. Polyploidization (whole-genome duplication - WGD) of the genome is a widespread and rapid way of speciation in plants. Tens of thousands of species of modern plants have arisen this way. Based on this fact, A. Löve (Löve, 1982, 1984) proposed to base the systematics and taxonomy of Wheatgrasses on the genomic formula - a unique composition of the genome characteristic of a given genus. A group of closely related species with either a specific diploid genome or a special combination of subgenomes, characteristic only for the genus, should be referred to one genus. Until recently, almost the only way to determine the genomic composition of species and genera was the method “Genomanalys” proposed by Kihara, which is based on the study of the patterns of chromosome conjugation in the offspring from crossing the tested polyploid with the supposed diploid ancestors (“analyzers”). The experimental approach proposed by Kihara required long and labor-intensive studies and the availability of collections of living plants. For this reason, genomic analysis was possible only in work with few crops. New methods for analyzing genomes had to emerge. “What is impossible now may eventually become possible” - wrote N.N. Tsvelev (1991). Such methods have now appeared. By examining intragenomic rDNA polymorphism by NGS on the Illumina platform, we can effectively identify plant species and genera and verify hypotheses about their origin.
References
2. Родионов А.В. 2023. Эуполиплоидия как способ видообразования у растений // Генетика. Т. 59. №5. С. 493-506. DOI: https://doi.org/10.31857/S0016675823050119
3. Родионов А. В. 2022. Тандемные дупликации генов, эуполиплоидия и вторичная диплоидизация–генетические механизмы видообразования и прогрессивной эволюции в мире растений // Turczaninowia, 25(4), 87-121
4. Цвелев Н. Н. 1991. О геномном критерии родов у высших растений // Бот. журн. Т. 76, № 5. С. 669–676).
5. Шнеер В. С., Пунина Е. О., Домашкина В. В., Родионов А. В. 2023. Криптогибриды у растений- подводная часть айсберга // Ботанический журнал. Т. 108. №12. С. 1037-1052.
6. Шнеер В. С., Родионов А. В. 2018. ДНК-штрихкоды растений // Успехи современной биологии. Т. 138. № 6. с. 531–538.
7. Armani, A., Guardone, L., La Castellana, R., Gianfaldoni, D., Guidi, A., & Castigliego, L. (2015. DNA barcoding reveals commercial and health issues in ethnic seafood sold on the Italian market // Food Control, 55, 206–214. https://doi.org/10.1016/j. foodcont.2015.02.030.
8. Dewey, D. R. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae // In: J. P. Gustafson (ed.) Gene manipulation in plant improvement. Boston, MA: Springer. Pp. 209-279.
9. Hebert P.D. N., Ratnasingham S., deWaard J. R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species // Proc. R. Soc. Lond. B. V. 27. P. 96–99.
10. Hollingsworth PM, Li D-Z, van der Bank M, Twyford AL. 2016. Telling plant species apart with DNA: From barcodes to genomes // Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150338.
11. Kappel, K., & Schröder, U. 2016. Substitution of high-priced fish with low-priced species: Adulteration of common sole in German restaurants // Food Control, 59, 478–486. https://doi.org/10.1016/j.foodcont.2015.06.024.
12. Kress, W. J. 2017. Plant DNA barcodes: Applications today and in the future // Journal of systematics and evolution, 55(4), 291-307.
13. Löve Á. 1984. Conspectus of the Triticeae // Feddes Repert. 1984. T. 95. S. 425–521.
14. Muñoz-Colmenero, M., Blanco, O., Arias, V., Martinez, J. L., & Garcia-Vazquez, E. 2016. DNA authentication of fish products reveals mislabeling associated with seafood processing // Fisheries, 41(3), 128–138. https://doi.org/10.1080/03632415.2015.1132706.
15. Premanandh, J., Sabbagh, A. and Maruthamuthu, M. 2013. Misdescription of packaged foods: a case study from the United Arab Emirates // Food Additives & Contaminants: Part A, 30(12), pp.2022-2026.
16. Raclariu, A. C., Heinrich, M., Ichim, M. C. and de Boer, H. 2018. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication// Phytochemical Analysis, 29(2), pp.123-128.
17. Shears, P. 2010. Food fraud–a current issue but an old problem // British Food Journal, 112(2), pp.198-213.
18. Stamatis, C., Sarri, C.A., Moutou, K.A., Argyrakoulis, N., Galara, I., Godosopoulos, V., Kolovos, M., Liakou, C., Stasinou, V., Mamuris, Z. 2015. What do we think we eat? Single tracing method across foodstuff of animal origin found in Greek market // Food Research International, 69, pp.151-155.
19. Wang, M., Liu, Z., Huang, H., Zhao, X. M., Shi, Q., He, S. P., et al. 2015. Application of DNA barcode technology in identification of fish and meat products in Shenzhen // Food Science, 36(20), 247–251. Available from: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spkx201520048.
20. Wong, E. H. K. and Hanner, R. H. 2008. DNA barcoding detects market substitution in North American seafood // Food Research International, 41(8), pp.828-837.
21. Wood T. E., Takebayashi N., Barker M. S. et al. 2009. The frequency of polyploid speciation in vascular plants //Proc. Natl Acad. Sci. USA. V. 106. P. 13875–13879.
This work is licensed under a Creative Commons Attribution 4.0 International License.