METHODOLOGICAL APPROACHES TO PREDICTING THE USE SCORE IN ORDER TO ATTRACT APPLICANTS TO THE UNIVERSITY УДК: 338.2 JEL: O. 032

Main Article Content

Alexandra D. Fedosova Email: aleksandra_fedosova@mail.ru

Abstract

Depending on the availability of the opportunity in the educational organization to accurately predict for applicants their possible score of the Unified State Exam, a certain degree of its competitiveness, trust and loyalty on the part of applicants depends. Using accurate mathematical models, it is possible to offer applicants possible options for increasing the USE score, through the implementation of additional, professional and educational courses, thereby increasing the attractiveness of the organization, as a result, its profit.Currently, there are several methodological approaches to predicting the USE score. Due to the improvement of information technologies, a methodological approach based on the construction and use of artificial neural networks has been developed in forecasting. Unlike other mathematical models, neural networks are currently the most accurate and adaptive. Therefore, the article proposed a methodological approach to predicting the USE score based on the construction and use of neural network models. The proposed approach can be applied to predict the USE score in various subjects.

Downloads

Article Details

How to Cite
Fedosova A. D. METHODOLOGICAL APPROACHES TO PREDICTING THE USE SCORE IN ORDER TO ATTRACT APPLICANTS TO THE UNIVERSITY // Управление современной организацией: опыт, проблемы и перспективы, 2023. Vol. 17, № 1. P. 16-27. URL: http://journal.asu.ru/mmo/article/view/14443.
Section
Вопросы теории и методологии управления организацией
Author Biography

Alexandra D. Fedosova, Altai State University

acting Director of the Center for Communication Solutions and Consulting, assistant at the Departmentof Management, Business Organization and Innovation, Barnaul, Russia

References

Борисов А. М., Сысоев В. Н., Будко Д. Ю., Гусакова Е. В. Прогнозирование успешности обучения и результата сдачи ЕГЭ в средних специальных учебных заведениях по оценке физиологического и психофизиологического уровней функционального состояния организма // Современные проблемы науки и образования. 2013. № 6 [Borisov A. M., Sysoev V. N., Budko D. Yu., Gusakova E. V. Forecasting the success of training and the result of passing the Unified State Exam in secondary specialized educational institutions to assess the physiological and psychophysiological levels of the functional state of the body. Sovremennye problemy nauki i obrazovaniya = Modern problems of science and education. 2013;6 (In Russ.)].
Веселкова Н. В. Высшее образование: выбор вуза или города? // Вестник социально-гуманитарного образования и науки., 2015. № 3. С. 41–46. [Veselkova, N. V. Higher education: choosing a university or a city? Vestnik social'no-gumanitarnogo obrazovaniya i nauki = Bulletin of Social and Humanitarian Education and Science. 2015;3:41–46. (In Russ.)].
Калиновская И. Н. Технология использования нейронных сетей в когнитивном маркетинге на примере белорусского обувного предприятия // Материалы и технологии. 2019. № 1 (3). С. 90–96 [Kalinovskaya I. N. Technology of using neural networks in cognitive marketing on the example of a Belarusian shoe company. Materialy i tekhnologii Materials and technologies. 2019;1 (3):90–96 (In Russ.)].
Маслевич Т. П., Сафронова Н. Б., Минаева Н. Л. Инновационные методы привлечения абитуриентов (на примере исследования факторов мотивации) // Вестник Оренбургского государственного университета. 2018. № 6. C. 52–60 [Maslevich T. P., Safronova N. B., Minaeva N. L. Innovative methods of attracting applicants (on the example of the study of motivation factors). Vestnik Orenburgskogo gosudarstvennogo universiteta = Bulletin of Orenburg State University, 2018;6:52–60 (In Russ.)].
Сырцова А. О. Метод прогнозирования результатов ЕГЭ на основе объединения моделей ARIMA и нейронной сети // Скиф. 2019. № 5–1 (33). С. 198–205 [Syrtsova A. O. A method for predicting the results
of the Unified State Exam based on combining ARIMA models and a neural network. Skif. 2019;5–1 (33):198–205 (In Russ.)].
Prakhov I., Bugakova P. Regional accessibility of higher education in Russia, British Journal of Sociology of Education, 2023;44 (3):558–583, DOI: 10.1080/01425692.2023.2167700