ROOT SPECIFIC METHYLATED FLAVONES PROTECT OF SCUTELLARIA BAICALENSIS

UDC 581.19

Аннотация

Plant specialized metabolites are small molecules known for their role in abiotic and biotic stress tolerance. Understanding of the individual functions of most of these metabolites remains unknown. A border of the root of annual plants is especially attractive to clarity how the plant roots withstand biotic and abiotic challenges. A main part of the metabolites in the root the plant Scutellaria baicalensis consists of the wide variety of methylated flavones. Eight most abundant of its, mono- and polymethylated, which present the beginning and end of the plant flavone biosynthesis pathway, respectively, were detected as phenoxide-ions over the root organs (bark, cambium, xylem and decayed core) by LС-MS. This inspection recovers their location within cambium and bark. The disposition of mono-methylated wogonin and oroxylin A with it’s the putative potency to form the o-quinon anions (reductants) provide chemical protection of the root from reactive oxygen species. The tetra- and penta-methylated flavones arrange a passive hydrophobic physical barrier of the root bark. Environment threats necessitate the plant to produce the methylated flavones, which resistance mechanisms are embedded in the structures of their molecules.

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Биографии авторов

Yuri Nikolaevich Elkin, Pacific Institute of Bioorganic Chemistry FEB RAS

Candidate of Chemical Sciences, senior researcher

Anna Yurievna Stepanova, Institute of Plant Physiology RAS

candidate of biological sciences, senior researcher

Stanislav Anatolievich Pshenichnyuk, Institute of Molecule and Crystal Physics

Doctor of Physical and Mathematical Sciences, acting. directors

Artem Yurievich Manyakhin, Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS

Candidate of Biological Sciences, senior researcher, head of the laboratory

Литература

Mouradov A., Spangenberg G. Front Plant Sci., 2014, vol. 5, article 620. DOI: 10.3389/fpls.2014.00620.

Yonekura-Sakakibara K., Higashi Y., Nakabayashi R. Front Plant Sci., 2019, vol. 10, article 943. DOI: 10.3389/fpls.2019.00943.

Alseekh S., Perez de Souza L., Benina M., Fernie A.R. Phytochemistry, 2020, vol. 174, article 112347. DOI: 10.1016/j.phytochem.2020.112347.

Chen S.L., Yu H., Luo H.M., Wu Q., Li C.F., Steinmetz A. Chinese Med., 2016, vol. 11, p. 37. DOI: 10.1186/s13020-016-0108-7.

Qiao X., Li R., Song W., Miao W.J., Liu J., Chen H.B., Guo D.A., Ye M. J. Chromatogr A, 2016, vol. 1441, pp. 83–95. DOI: 10.1016/j.chroma.2016.02.079.

Cui M.Y., Lu A.R., Li J.X., Liu J., Fang Y.M., Pei T.L., Zhong X., Wei Y.K., Kong Y., Qiu W.Q., Hu Y.H., Yang J., Chen X.Y., Martin C., Zhao Q. Plant Biotechnol. J., 2022, vol. 20(1), pp. 129–142. DOI: 10.1111/PBI.13700.

Berim A., Gang D.R. Phytochem Rev., 2016, vol. 15, pp. 363–90. DOI: 10.1007/s11101-015-9426-0.

Cheng L., Han M., Yang L.-m., Li Y., Sun Z., Zhang T. Ind. Crops Prod., 2018, vol. 122, pp. 473–482. DOI: 10.1016/j.indcrop.2018.06.030.

Zhang L., Cao B., Bai C., Li G., Mao M. Environ Earth Sci., 2016, vol. 75, p. 361. DOI: 10.1007/s12665-015-5133-9.

Gao T., Xu Z., Song X., Huang K., Li Y., Wei J., Zhu X., Ren H., Sun C. Int. J. Mol. Sci., 2019, vol. 20, p. 426. DOI: 10.3390/ijms20184426.

Liu J., Hou J., Jiang C., Li G., Lu H., Meng F., Shi L., Jain M. PLoS One, 2015, vol. 10(8), article e0136397. DOI: 10.1371/journal.pone.0136397.

Xu J., Yu Y., Shi R., Xie G., Zhu Y., Wu G., Qin M. Molecules, 2018, vol. 23(2), article 428. DOI: 10.3390/MOLECULES23020428.

Tani T., Katsuki T., Kubo M., Arichi S. Chem. Pharm. Bull., 1985, vol. 33(11), pp. 4894–4900.

Feng B., Zhang J., Chang C., Li L., Li M., Xiong X., Guo C., Tang F., Bai Y., Liu H. Anal. Chem., 2014, vol. 86(9), pp. 4164–4169. DOI: 10.1021/ac403310k.

Sun C., Zhang M., Dong H., Liu W., Guo L., Wang X. J. Pharm. Biomed. Anal., 2020, vol. 179, article 113014. DOI: 10.1016/j.jpba.2019.113014.

Wang X.J., Ren J.L., Zhang A.H., Sun H., Yan G.L., Han Y., Liu L. Mass Spectrom. Rev. 2019, vol. 38 (4–5), pp. 380–402. DOI: 10.1002/mas.21589.

Elkin Y.N., Kulesh N.I., Stepanova A.Y., Solovieva A.I., Kargin V.M., Manyakhin A.Y. J. Plant Physiol., 2018, vol. 231, pp. 277–80. DOI: 10.1016/j.jplph.2018.10.009.

Modelli A., Pshenichnyuk S.A. Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 1588–600. DOI: 10.1039/C2CP43379F.

Xia H., Attygalle A.B. Anal. Chem., 2016, vol. 88, pp. 6035–6043. DOI: 10.1021/acs.analchem.6b01230.

Hirunuma M., Shoyama Y., Sasaki K., Sakamoto S., Taura F., Shoyama Y., Tanaka H., Morimoto S. Phytochemistry, 2011, vol. 72, pp. 752–60. DOI: 10.1016/j.phytochem.2011.02.009.

Turrens J.F. J. Physiol., 2003, vol. 552, pp. 335–344. DOI: 10.1113/jphysiol.2003.049478.

Bhattacharjee S. Currnt Scienc. 2005, vol. 89, pp. 1113–1121.

Li L., Kitazawa H., Zhang X., Zhang L., Sun Y., Wang X., Liu Z., Guo Y., Yu S. Food Chem., 2021, vol. 340, arti-cle 127833. DOI: 10.1016/J.FOODCHEM.2020.127833.

Buettner G.R. Arch Biochem. Biophys. 1993, vol. 300, pp. 526–543. DOI: 10.1006/abbi.1993.1074.

Pshenichnyuk S.A., Elkin Y.N., Kulesh N.I., Lazneva E.F., Komolov A.S. Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 16805–16812. DOI: 10.1039/c5cp02890f.

Asfandiarov N.L., Pshenichnyuk S.A., Vorob’ev A.S., Nafikova E.P., Elkin Y.N., Pelageev D.N., Koltsova E.A., Mo-delli A. Rapid Commun Mass Spectrom., 2014, vol. 28, pp. 1580–1590. DOI: 10.1002/rcm.6934.

Ohta S. Biochim. Biophys Acta - Gen Subj., 2012, vol. 1820, pp. 586–594. DOI: 10.1016/j.bbagen.2011.05.006.

Russell G., Zulfiqar F., Hancock J.T. Plants, 2020, vol. 9(9), article 1136. DOI: 10.3390/plants9091136.

Li C., Gong T., Bian B., Liao W. Funct. Plant Biol., 2018, vol. 45(8), pp. 783–792. DOI: 10.1071/FP17301.

Utkina N.K., Kulesh N.I. Pharm. Chem. J., 2012, vol. 46, pp. 488–491. DOI: 10.1007/s11094-012-0831-z.

Wang N., Huang D., Li C., Deng Y., Li W., Yao Y., Liao W. Sci. Hortic., 2020, vol. 272, article 109492. DOI: 10.1016/j.scienta.2020.109492.

Li L., Wei S., Shen W. Plant Cell. Rep., 2020, vol. 39(2), pp. 171–179. DOI: 10.1007/s00299-019-02478-y.

Bolton J.L., Dunlap T.L., Dietz B.M. Food Chem. Toxicol., 2018, vol. 120, pp. 700–707. DOI: 10.1016/j.fct.2018.07.050.

Dudylina A.L., Ivanova M. V., Shumaev K.B., Ruuge E.K. Cell. Biochem. Biophys., 2019, vol. 77(1), pp. 99–107. DOI: 10.1007/s12013-018-0857-2.

Опубликован
2023-12-15
Как цитировать
1. Elkin Y. N., Stepanova A. Y., Pshenichnyuk S. A., Manyakhin A. Y. ROOT SPECIFIC METHYLATED FLAVONES PROTECT OF SCUTELLARIA BAICALENSIS // Химия растительного сырья, 2023. № 4. С. 241-248. URL: http://journal.asu.ru/cw/article/view/11877.
Выпуск
Раздел
Низкомолекулярные соединения