On three-dimensional locally homogeneous manifolds with vectorial torsion and zero curvature tensor

  • V.V. Balashchenko Belarusian State University
  • O.P. Khromova Altai State University
  • S.V. Klepikova Altai State University
Ключевые слова: metric connection, vectorial torsion, locally homogeneous manifold, curvature tensor

Аннотация

This paper is devoted to solving the problem of studying locally homogeneous (pseudo)Riemannian manifolds with metric connection with vectorial torsion, the curvature tensor of which is zero.

Литература

1. Agricola I., Kraus M. Manifolds with vectorial torsion // Di erential Geometry and its Applications. - 2016. - Vol. 46. - P. 130-146.
2. De U.C., De B.K. Some properties of a semi-symmetric metric connection on a Riemannian manifold // Istanbul Univ. Fen. Fak. Mat. Der. - 1995. - Vol. 54. - P. 111-117.
3. Sekigawa K. On some 3-dimensional curvature homogeneous spaces // Tensor N. S. - 1977. - Vol. 31. - P. 87-97.
4. Calvaruso G. Homogeneous structures on three-dimensional Lorentzian manifolds // J. Geom. Phys. - 2007. - Vol. 57. - P. 1279-1291.
5. Mozhey N.P. Cohomology of three-simensional homogeneous spaces // Proceedings of BSTU. - 2014. - Vol. 6. - P. 13-18. - (in Russian).
6. Milnor J. Curvature of left invariant metric on Lie groups // Advances in mathematics. - 1976. - Vol. 21. - P. 293-329.
7. Rodionov E.D., Slavskii V.V., Chibrikova L.N. Locally conformally homogeneous pseudo-Riemannian spaces // Siberian Advances in Mathematics. - 2007. - Vol. 17. - P. 186-212.
8. Cordero L.A., Parker P.E. Left-invariant Lorentzian metrics on 3-dimensional Lie groups // Rend. Mat. - 1997. - Vol. 17. - P. 129-155.
Опубликован
2019-12-29
Как цитировать
1. Balashchenko V., Khromova O., Klepikova S. On three-dimensional locally homogeneous manifolds with vectorial torsion and zero curvature tensor // Труды семинара по геометрии и математическому моделированию, 2019. № 5. С. 5-10. URL: http://journal.asu.ru/psgmm/article/view/7233.