О ПРИМЕНИМОСТИ ТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ АКТОРОВ СОЦИАЛЬНО-ПОЛИТИЧЕСКОЙ МОБИЛИЗАЦИИ С ИСПОЛЬЗОВАНИЕМ LOW-CODE АНАЛИТИЧЕСКИХ ПЛАТФОРМ

Основное содержание статьи

Иван Юрьевич Степанов Email: zextel1995@gmail.com
Елена Анатольевна Кранзеева Email: elkranzeeva@mail.ru
Евгений Васильевич Головацкий Email: xomaik@rambler.ru
Инна Вениаминовна Донова Email: idonova@gmail.com
Анна Леонидовна Бурмакина Email: anna-sidjakina@rambler.ru

Аннотация

Рассматривается современный подход к анализу социально-политических процессов, основанный на предположении, что тематическое моделирование, применяемое посредством low-code платформ, может повлиять на общее качество проводимого аналитиками исследования в целях выявления ключевых акторов и динамики социально-политических процессов. Авторы демонстрируют, как тематическое моделирование может выявлять взаимосвязи и тренды, недоступные при использовании традиционных методов анализа, и предлагают объединенную методологию, позволяющую исследователям социальных наук применять эти инструменты для более глубокого понимания механизмов социально-политической мобилизации. В работе представлен кейс-стади, демонстрирующий, как тематическое моделирование может выявить скрытые связи между различными акторами и их вклад в динамику мобилизации.

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Детали статьи

Как цитировать
Степанов, И. Ю., Кранзеева, Е. А., Головацкий, Е. В., Донова, И. В., & Бурмакина, А. Л. (2024). О ПРИМЕНИМОСТИ ТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ АКТОРОВ СОЦИАЛЬНО-ПОЛИТИЧЕСКОЙ МОБИЛИЗАЦИИ С ИСПОЛЬЗОВАНИЕМ LOW-CODE АНАЛИТИЧЕСКИХ ПЛАТФОРМ. Society and Security Insights, 7(1), 27-39. https://doi.org/10.14258/SSI(2024)1-02
Раздел
ГОСУДАРСТВО, ГРАЖДАНСКОЕ ОБЩЕСТВО И СТАБИЛЬНОСТЬ
Биографии авторов

Иван Юрьевич Степанов, Кемеровский государственный университет

ассистент кафедры цифровых технологий института Цифры, Кемеровский государственный университет, г. Кемерово, Россия.

Елена Анатольевна Кранзеева, Кемеровский государственный университет

д-р социол. наук, доцент, зав. кафедрой социологических наук, Кемеровский государственный университет, г. Кемерово, Россия.

Евгений Васильевич Головацкий, Кемеровский государственный университет

д-р социол. наук, доцент, профессор кафедрысоциологических наук, Кемеровский государственный университет, г. Кемерово,Россия.

Инна Вениаминовна Донова, Кемеровский государственный университет

канд. экон. наук, доцент кафедры менеджмента имени И.П. Поварича Института экономики и управления, Кемеровский государственный университет, г. Кемерово, Россия.

Анна Леонидовна Бурмакина

старший преподаватель кафедры социологических наук, Кемеровский государственный университет, г. Кемерово, Россия.

Литература

Алексеев, М. С. Технологии девиантного поведения в сетевом пространстве // Молодой ученый. 2019. № 49 (287). С. 539-542.
Анашкина М.В., Колесова И.В. Применение datamining в процессе выявления недобросовестных практик на рынке ценных бумаг (на основе кейса) // Финансовые исследования. 2020. №3 (68). C. 16-26.
Володенков С.В., Митева Виктория Валентиновна Сетевые информационные войны в современных условиях: основные акторы и стратегии // PolitBook. 2016. №3.
Гончаренко Ю. Д. К возможности группировки керамики в среде для анализа данных ORANGE (на основе материалов самосдельского городища) // Материалы Всероссийской (с международным участием) археологической студенческой конференции (Астрахань, 01-03 февраля 2022 г.). / сост. и отв. ред. Д. В. Васильев. Астрахань: Издатель: Сорокин Р.В., 2022. C. 185-187
Горчакова О. Ю., Ларионова А. В., Александрова Ю. К., Петров Е. Ю. Особенности новостного дискурса социально-политической тематики на примере региональных новостных пабликов в социальной сети "Вконтакте" // Филология: научные исследования. 2021. № 3. С. 1-17. DOI: 10.7256/2454-0749.2021.3.35234
Исаева Е. В. Тематическое моделирование в дискурсе компьютерной безопасности: исследование на примере публикаций информационных бюллетеней и новостных лент // Вестник Пермского университета. Российская и зарубежная филология, 2022, 14(2). https://doi.org/10.17072/2073-6681-2022-2-18-26
Колбягина Л. А. Кластерный анализ отраслевой структуры налоговых доходов на региональном уровне // Известия БГУ. 2022. № 3. С. 493-500.
Конышев Е. В. Методика изучения ментального туристско-рекреационного пространства по отзывам туристов (на примере Кировской области) // Вестник Московского университета. 2022. Сер. 5: География. № 5. С. 16-28.
Кранзеева Е. А., Головацкий Е. В., Орлова А. В. Социальное и политическое взаимодействие местных сообществ региона в условиях реактивных отношений: кейсы благоустройства городского пространства // Вестник Томского государственного университета. 2021. № 464. С. 81-90. DOI: 10.17223/15617793/464/10

Лебедкина Н. С., Александрова Ю. К., Орлова В. В. Анализ миграционных потоков молодежи на территории субъектов российской федерации // Векторы благополучия: экономика и социум, 2021, № 2 (41). С. 57-72. doi:10.18799/26584956/2021/3(42)/1089
Мирошниченко И. В. Сетевая публичная политика и управление. М.: Аргамак-Медиа, 2016. 296.с.
Михненко П.А. Data mining как инструмент мультимодальной бизнес-аналитики: трансформация лексики годовых отчетов госкорпорации «Ростех» // Вестник Российского экономического университета имени Г. В. Плеханова. 2022. № 6. С. 126-136. doi:10.21686/2413-2829-2022-6-126-136.
Семенов А. Событийный анализ протестов как инструмент изучения политической мобилизации // Социологическое обозрение. 2018. Т. 17. № 2. С. 317-341. doi: 10.17323/1728-192X-2018-2-317-341
Сухарева А.В., Воронцов К.В. Построение полного набора тем вероятностных тематических моделей // Интеллектуальные системы. Теория и приложения. 2019. Т. 23. № 4. С. 7-23.
Черкасов Е. И. Сравнение алгоритмов тематического моделирования при определении тематик постов людей в социальной сети “Вконтакте” // Евразийский Союз Ученых. 2020. № 6-2 (75). С. 45-49.
Apishev M., Vorontsov K. Learning topic models with arbitrary loss // Proceedings of the XXth Conference of Open Innovations Association FRUCT. 2020. Vol. 26. P. 1-8. DOI: 10.23919/FRUCT48808.2020.9087559
Deerwester S., et al, Improving Information Retrieval with Latent Semantic Indexing, Proceedings of the 51st Annual Meeting of the American Society for Information Science 25, 1988. Pp. 36–40.
Golovatsky E., Kranzeeva E., Orlova A., Burmakina A. Social Practices of Mobilizing Population Initiatives: Prospects for Hybrid Methodology // International Conference on Communicative Strategies of Information Society (CSIS 2018). Advances in Social Science, Education and Humanities Research, 2018. Vol. 289. Pp. 8-13. doi: 10.2991/csis-18.2019.2
Greff K., Srivastava R. K., Koutník J., Steunebrink B. R., and J. Schmidhuber, "LSTM: A Search Space Odyssey," in IEEE Transactions on Neural Networks and Learning Systems, Vol. 28, No 10. Pp. 2222-2232, Oct. 2017, doi: 10.1109/TNNLS.2016.2582924.
Hofmann Th. Learning the Similarity of Documents: an information-geometric approach to document retrieval and categorization, Advances in Neural Information Processing Systems 12. MIT Press, 2000. Pp. 914-920.
Hutter S. 2014. Protest Event Analysis and Its Offspring // della Porta D. (ed.). Methodological Practices in Social Movement Research. Oxford: Oxford University Press. Pp. 335-367.
REFERENCES
Alekseev, M. S. (2019). Technologies of deviant behavior in the network space. Young scientist, 49(287), 539-542. (In Russ.).
Anashkina, M. V., & Kolesova, I. V. (2020). Application of datamining in the process of identifying unfair practices in the securities market (based on the case). Finansovye issledovanija, (3)68, 16-26. (In Russ.).
Apishev, M., & Vorontsov, K. (2020). Learning topic models with arbitrary loss. InL Proceedings of the XXth Conference of Open Innovations Association FRUCT, Vol. 26 (Pp. 1-8). DOI: 10.23919/FRUCT48808.2020.9087559
Cherkasov, E. I. (2020). Comparison of algorithms of thematic modeling in determining subjects of posts of people in the social network "Vkontakte". Evrazijskij Sojuz Uchenyh, (6-2)75, 45-49. (In Russ.).
Deerwester, S., et al. (1988). Improving Information Retrieval with Latent Semantic Indexing. Proceedings of the 51st Annual Meeting of the American Society for Information Science, 25, 36–40.
Golovatsky, E., Kranzeeva, E., Orlova, A., & Burmakina, A. (2018). Social Practices of Mobilizing Population Initiatives: Prospects for Hybrid Methodology. In: International Conference on Communicative Strategies of Information Society (CSIS 2018). Advances in Social Science, Education and Humanities Research, 289 (Pp. 8-13). https://doi.org/10.2991/csis-18.2019.2
Goncharenko, Ju. D. (2022). To the possibility of grouping ceramics in the environment for analysis of ORANGE data (based on the materials of the fort). In: D. V. Vasil'ev (Ed.), Materialy Vserossijskoj (s mezhdunarodnym uchastiem) arheologicheskoj studencheskoj konferencii (Astrahan', 01-03 fevralja 2022 g.) (Pp. 185-187). Astrahan: Sorokin R.V. (In Russ.).
Gorchakova, O. Ju., Larionova, A. V., Aleksandrova, Ju. K., & Petrov, E. Ju. (2021). Features of the social and political discourse on the example of regional news publics in the social network "Vkontakte". Filologija: nauchnye issledovanija, 3, 1-17. doi:10.7256/2454-0749.2021.3.35234 (In Russ.).
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222-2232. doi:10.1109/TNNLS.2016.2582924

Hofmann, T. (2000). Learning the similarity of documents: an information-geometric approach to document retrieval and categorization. In: Advances in Neural Information Processing Systems 12 (pp. 914-920). MIT Press.
Hutter, S. (2014). Protest event analysis and its offspring. In D. della Porta (Ed.), Methodological Practices in Social Movement Research (pp. 335-367). Oxford: Oxford University Press.
Isaeva, E. V. (2022). Topic modelling in the computer security discourse: case study on newsletters and news feeds. Vestnik Permskogo universiteta. Rossijskaja i zarubezhnaja filologija, 14(2). doi:10.17072/2073-6681-2022-2-18-26 (In Russ.).
Kolbjagina, L. A. (2022). Cluster analysis of the sectoral structure of tax revenues at the regional level. Izvestija BGU, 3, 493-500. (In Russ.).
Konyshev, E. V. (2022). Methods of studying the mental tourist-recreational space according to the reviews of tourists (on the example of Kirov region). Vestnik Moskovskogo universiteta. Ser. 5: Geografija, 5, 16-28. (In Russ.).
Kranzeeva, E. A., Golovackij, E. V., & Orlova, A. V. (2021). Social and political interaction of local communities of the region in reactive relations: cases of urban improvement. Vestnik Tomskogo gosudarstvennogo universiteta, 464, 81-90. doi:10.17223/15617793/464/10.
Lebedkina, N. S., Aleksandrova, Ju. K., & Orlova, V. V. (2021). Analysis of migration flows of youth in the territory of the constituent entities of the Russian Federation. Vektory blagopoluchija: jekonomika i socium, 2(41), 57-72. doi:10.18799/26584956/2021/3(42)/1089 (In Russ.).
Miroshnichenko, I. V. (2016). Network public policy and management. Moskva: Argamak-Media. (In Russ.).
Mihnenko, P. A. (2022). Data mining as a tool of multimodal business analytics: transformation of vocabulary of annual reports of the state corporation «RosTech». Vestnik Rossijskogo jekonomicheskogo universiteta imeni G. V. Plehanova, 6, 126-136. doi:10.21686/2413-2829-2022-6-126-136. (In Russ.).
Semenov, A. (2018). Event analysis of protests as a tool to study political mobilization. Sociologicheskoe obozrenie, 17(2), 317-341. doi:10.17323/1728-192X-2018-2-317-341. (In Russ.).
Suhareva, A. V., & Voroncov, K. V. (2019 Building a complete set of probabilistic thematic model topics. Intellektual'nye sistemy. Teorija i prilozhenija, 23(4), 7-23. (In Russ.).