HYBRID CNN-KAN ARCHITECTURE FOR DETECTING GENERATED IMAGES УДК 004.056.57 : 004.852
Main Article Content
Abstract
The article discusses the development of a hybrid CNN-KAN neural networkarchitecture designed for detecting generatedimages. The problem of detecting synthetic visualcontent is becoming increasingly importantdue to the rapid growth of generative AItechnologies. The paper describes the principlesof convolutional neural networks (CNNs) andKolmogorov-Arnold networks (KANs), andprovides a rationale for combining them intoa single hybrid model. It has been experimentallyshown that CNN-KAN performs better thantraditional CNN-MLP architectures in termsof Accuracy, Precision, Recall, F1-score, andROC-AUC metrics. The proposed architecturecombines the ability of CNN to extract localfeatures with the ability of KAN to generalizeglobal patterns, resulting in high classificationaccuracy. The research findings demonstratethe effectiveness of the hybrid approach and itspotential for use in fake image detection tasks.
Downloads
Article Details
References
2. Воронин А.И., Гавра Д.П. Дипфейки:современное понимание, подходы к определению, характеристики, проблемы и перспективы // Российская школа связей с общественностью. 2024. № 33. С. 10–16.
3. Generative Adversarial Networks / Ian J.Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,Bing Xu, David Warde-Farley, Sherjil Ozair,Aaron Courville, Yoshua Bengio — Canada :Departement d’informatique et de recherche op ´erationnelle ´ Universite de Montr ´ eal ´ Montreal, QC H3C 3J7 , 2014. 2-8 с. arXiv:1406.2661.
4. Deepfake Detection using Biological Features: A Survey / Kundan Patil, Shrushti Kale, Jaivanti Dhokey, Abhishek Gulhane — Mumbai : University at Albany, State University of New York, 2023. 2-13 с. arXiv:2301.05819v1.
5. KAN: Kolmogorov–Arnold Networks /Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic, Thomas Y. Hou, Max Tegmark — USA : Massachusetts Institute of Technology, California Institute of Technology, Northeastern University, The NSF Institute for Artificial Intelligence and Fundamental Interactions, 2024. 2-50 с. arXiv:2404.19756v4.
6. Kolmogorov-arnold network for satellite image classification in remote sensing / Minjong Cheon //arXivLabs: experimental projects with community collaborators — USA, 2024. С. 2–10.
7. Github platform for development. Kolmogorov-Arnold Networks (KANs): сайт. 2024. URL: https://github.com/KindXiaoming/pykan?tab=readme-ov-file (дата обращения:05.05.2025).
8. Lecun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. Vol. 521. P. 436–444.
9. Goodfellow I., Bengio Y., Courville A. Deep Learning. Cambridge: MIT Press, 2016. 655 p.
10. Simonyan K., Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition // arXiv preprint arXiv:1409.1556. 2014. 13 p.
11. Krizhevsky A., Sutskever I., Hinton G. ImageNet classification with deep convolutional neural networks // Advances in Neural Information Processing Systems. 2012. Vol. 25. P. 1097–1105.
12. Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift // International Conference on Machine Learning (ICML). 2015. P. 448–456.
13. Энциклопедия «Касперского». Дипфейк, deepfake: сайт. 2025. URL: https://encyclopedia.kaspersky.ru/glossary/deepfake/(дата обращения: 10.05.2025).
14. Google DeepMind. SynthID: сайт. 2025.URL: https://deepmind.google/science/synthid/(дата обращения: 10.05.2025).
15. Метрики качества моделей бинарной классификации: сайт. 2023. URL: https://loginom.ru/blog/classification-quality (дата обращения: 10.05.2025).