DETECTION OF SPOOFING ATTACKS BASED ON CONVOLUTIONAL NEURAL NETWORKS AND COLOR SPACES УДК 004.056.57
Main Article Content
Abstract
The article describes the development of a method for detecting spoofingattacks based on convolutional neural networksand color spaces.Two convolutional neural network (CNN)architectures were developed, using differentcolor spaces. The first architecture has oneinput layer for one color space. The secondarchitecture has two parallel input layers for twocolor spaces. The following models were trained:RGB, CMYK, YCbCr, HSV, RGB+YCbCr,RGB+HSV, RGB+CMYK, YCbCr+CMYK,YCbCr+HSV, HSV+CMYK. The models weretrained on two datasets: OpenForensics Datasetand Dataset Nvidia & StyleGAN. It was foundthat all developed models show fairly high resultsin detecting generated images. The results of thework can be applied to detect generated imagesusing convolutional neural networks and colorspaces.
Downloads
Article Details
References
2. Ennehar B.C., Brahim O., Hicham T. An Appropriate Color Space to Improve Human Skin Detection // INFOCOMP Journal of Computer Science. 2010. Vol. 9(4). Р. 1–10.
3. Dariusz J.S., W. Miziolek. Human colour skin detection in CMYK colour space // IET Image Processing. 2015. Vol. 9. Р. 751–757.
4. Manjare S., Chougule S.R. Skin Detection for Face Recognition Based on HSV Color Space // International Journal of Engineering Sciences & Research Technology. 2013. Vol. 2(7).
5. Khamar Basha Shaika, Ganesan P., Kalist V., Sathish B.S., Merlin J. Mary Jenitha. Comparative Study of Skin Color Detection and Segmentation in HSV and YCbCr Color Space // Procedia Computer Science 57. 2015. P. 41–48.
6. Dubey S.R., S.K Singh, B.B Chaudhuri. Activation functions in deep learning: A comprehensive survey and benchmark // Neurocomputing. 2022. Vol. 503. P. 92–108.
7. Szandała T. Review and comparison of commonly used activation functions for deep neural networks // Bio-inspired neurocomputing. 2021. Vol. 1. Р.203–224.
8. Bhatt D., C. Patel, H. Talsania, J. Patel, R. Vaghela, S. Pandya and H. Ghayvat. CNN variants for computer vision: History, architecture, application, challenges and future scope // Electronics. 2021. Vol. 10. N. 20. P. 2470.
9. Balamurali K., Chandru S., Razvi M.S., Sathiesh V. Kumar. Face Spoof Detection Using VGG-Face Architecture // Journal of Physics: Conference Series. 2021. Vol. 1917. N. 1. P. 12010.
10. Yang Z, Xu Q, Bao S, Cao X, Huang Q. Learning with multiclass AUC: Theory and algorithms // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021. Vol. 44. Р. 7747–7763.