Methane emission from the Western Siberia’s wetland ecosystems in 2000–2050
PDF
XML

Keywords

CMIP5 climate evolution scenario
Reanalysis NCEP-DOE AMIP-II (R2)
regional climate model RegCM4
soil temperature
volumetric moisture content

How to Cite

Lagutin, A. A., Volkov, N. V., & Mordvin, E. Y. (2024). Methane emission from the Western Siberia’s wetland ecosystems in 2000–2050. Acta Biologica Sibirica, 10, 171–188. https://doi.org/10.5281/zenodo.10920669

Abstract

The interannual variability of methane emissions from wetland ecosystems of Western Siberia in 2000–2050 has been investigated. Calculations of CH₄ emission were performed using the approach, in which the total daily methane flux is determined by the sum of positive temperatures accumulated in the soil at that time and its moisture content. Required characteristics of the soil were obtained using regional climate model RegCM4. The reanalysis NCEP-DOE AMIP-II (R2) and data of HadGEM2-ES global model for the RCP4.5 and RCP8.5 evolution scenario of the global climate system were used to define the initial and boundary conditions. It was found that for Western Siberia’s wetland complexes, analyzed in this paper, the model estimates for methane emission in 2000–2013 vary from ~3.5 to ~5.5 Tg CH₄/yr. The average value of emission is 4.34 TgCH₄/yr. The rate of change of methane emission during this period is almost neutral. Growth of CH₄ emission is observed only in the areas of tundra and forest tundra. Forecast values of methane emission obtained for the period 2021–2050 for scenarios RCP4.5 and RCP8.5 ranges from 3.9 up to 7.6 Tg CH₄/yr. The average emission values are 5.0 and 5.8 Tg CH₄/yr, respectively. Trends of CH₄ emission for this period are also practically neutral.

https://doi.org/10.5281/zenodo.10920669
PDF
XML

References

Arshinov MYu, Belan BD, Davydov DK, Krekov GM, Fofonov AV, Babchenko SV, Inoue G, Machida T, Maksutov Sh, Sasakawa M, Shimoyama K (2012) The dynamics in vertical distribution of greenhouse gases in the atmosphere. Atmospheric and Oceanic Optics 25(12): 1051–1061. [In Russian]

Aumann HH, Chahine MT, Gautier С, Goldberg MD, Kalnay E, McMillin LM, Revercomb H, Rosenkranz PW, Smith WL, Staelin DH, Strow LL, Susskind J (2003) AIRS/AMSU/ HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Transactions on Geoscience Remote Sensing 41(2): 253–264. https://doi.org/10.1109/TGRS.2002.808356

Belan BD (2010) Ozone in the troposphere. Institute of Atmospheric Optics, Tomsk, 488 pp. [In Russian]

Bohn TJ, Melton JR, Ito A, Kleinen T, Spahni R, Stocker BD, Zhang B, Zhu X, Schroeder R, Glagolev MV, Maksyutov S, Brovkin V, Chen G, Denisov SN, Eliseev AV, Gallego-Sala A, McDonald KC, Rawlins MA, Riley WJ, Subin ZM, Tian H, Zhuang Q, Kaplan JO (2015) WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences 12: 3321–3349. https://doi.org/10.5194/bg-12-3321-2015

Canadell JG, Monteiro PMS, Costa MH, Cotrim da Cunha L, Cox PM, Eliseev AV, Hen- son S, Ishii M, Jaccard S, Koven C, Lohila A, Patra PK, Piao S, Rogelj J, Syampungani S, Zaehle S, Zickfeld K (2021) Global carbon and other biogeochemical cycles and feedbacks. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (Eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 673–816. https://doi.org/10.1017/9781009157896.007

Christensen TR, Cox P (1995) Response of methane emission from arctic tundra to climatic change: Results from a model simulation. Tellus 47B: 301–310. https://doi.org/10.1034/j.1600-0889.47.issue3.2.x

Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H (2003) Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters 30(7): 1414. https://doi.org/10.1029/2002GL016848

Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth- System model – HadGEM2. Geoscientific Model Development 4: 1051–1075. https://doi.org/10.5194/gmd-4-1051-2011

Crotwell A, Dlugokencky E, Gerbig C, Griffith D, Hall B, Houweling S, Jordan A, Krummel P, Lee H, Loh Z, Sawa Y, Tarasova O, Turnbull J, Velders G, Vermeulen A, Weiss R (2022) The state of greenhouse gases in the atmosphere based on global observations through 2021. In: Vermeulen A, Sawa Y, Tarasova O (Eds) WMO Greenhouse Gas Bulletin 18, ISSN 2078-0796.

Denisov SN, Eliseev AV, Mokhov II (2010) Assessment of changes in methane emissions from marsh ecosystems of northern Eurasia in the 21st century using regional climate model results. Russian Meteorology and Hydrology 35: 115–120. https://doi.org/10.3103/S1068373910020056

Denisov SN, Arzhanov MM, Eliseev AV, Mokhov II (2011) Sensitivity of methane emissions from Western Siberian wetlands to climate changes: multi-model estimations. Atmospheric and Oceanic Optics 24(4): 319–322 [In Russian]

Deppe M, Knorr KH, McKnight DM, Blodau C (2010) Effects of short-term drying and irrigation on CO₂ and CH₄ production and emission from mesocosms of a northern bog and an alpine fen. Biogeochemistry 100: 89–103. https://doi.org/10.1007/s10533-010-9406-9

Estop-Aragones C, Knorr KH, Blodau C (2013) Belowground in situ redox dynamics and methanogenesis recovery in adegraded fen during dry-wet cycles and flooding. Biogeosciences 10(1): 421–436. https://doi.org/10.5194/bg-10-421-2013

Fan Z, Neff JC, Waldrop MP, Ballantyne AP, Turetsky MR (2014) Transport of oxygen in soil pore-water systems: implications for modeling emissions of carbon dioxide and methane from peatlands. Biogeochemistry 121: 455–470. https://doi.org/10.1007/s10533-014-0012-0

Feng L, Palmer PI, Parker RJ, Lunt MF, Bösch H (2023) Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021. Atmospheric Chemistry and Physics 23: 4863–4880. https://doi.org/10.5194/acp-23-4863-2023

Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research 52: 7–29. https://doi.org/10.3354/cr01018

Glagolev MV, Golovatskaya EA, Shnyrev NA (2007) Emission of greenhouse gases at the territory of West Siberia. Siberian Journal of Ecology 14(2): 197–210. [In Russian]

Glagolev MV, Shnyrev NA (2008) Methane emission from mires of Tomsk oblast in the summer and fall and the problem of spatial and temporal extrapolation of the obtained data. Moscow University Soil Science Bulletin 63(2): 67–80. https://doi.org/10.3103/S014768740802004X

Glagolev M, Kleptsova I, Filippov I, Maksyutov S, Machida T (2011) Regional methane emission from West Siberia mire landscapes. Environmental Research Letters 6(4): 045214. http://dx.doi.org/10.1088/1748-9326/6/4/045214

Glagolev MV, Sabrekov AF, Kleptsova IE, Filippov IV, Lapshina ED, Machida T, Maksyutov SS (2012) Methane emission from bogs in the subtaiga of Western Siberia: The development of standard model. Eurasian Soil Science 45(10): 947–957. https://doi.org/10.1134/S106422931210002X

Goldberg MD, Kilcoyne H, Cikanek H, Mehta A (2013) Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. Journal of Geophysical Research: Atmosperes 118(24): 13463–13475. https://doi.org/10.1002/2013JD020389

Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J-N (2020) The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730): 1999–2049. https://doi.org/10.1002/qj.3803

Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society 83: 1631–1643. https://doi.org/10.1175/BAMS-83-11-1631

Kim H-S, Maksyutov S, Glagolev MV, Machida T, Patra PK, Sudo K Inoue G (2011) Evaluation of methane emissions from West Siberian wetlands based on inverse modeling. Environmental Research Letters 6(3): 035201. https://doi.org/10.1088/1748-9326/6/3/035201

Kyzivat ED, Smith LC, Garcia-Tigreros F, Huang C, Wang C, Langhorst T, Fayne J.V., Harlan ME, Ishitsuka Y., Feng D, Dolan W, Pitcher LH, Wickland KP, Dornblaser MM, Striegl RG, Pavelsky TM, Butman DE, Gleason CJ (2022) The Importance of Lake Emergent Aquatic Vegetation for Estimating Arctic-Boreal Methane Emissions. Journal of Geophysical Research: Biogeosciences 127: e2021JG006635. https://doi.org/10.1029/2021JG006635

Kotsyurbenko OR, Chin KJ, Glagolev MV, Stubner S, Simankova MV, Nozhevnikova AN, Conrad R (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environmental Microbiology 6: 1159–1173. https://doi.org/10.1111/j.1462-2920.2004.00634.x

Lagutin AA, Mordvin EYu, Shmakov IA (2012) Methane content in troposphere of Western Siberia according to AIRS/Aqua data. Bulletin of Altai State University 1/1(73): 191–196. [In Russian]

Lagutin AA, Volkov NV, Makushev KM, Mordvin EYu (2017) The global climate change effect on the Altai region's climate in the first half of XXI century. Proceedings of SPIE, 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics 10466: 104666R. https://doi.org/10.1117/12.2288197

Lagutin AA, Volkov NV, Mordvin EYu (2018) The influence of global climate changes on Western Siberia climate in the first half of XXI century. Computational Technologies 23(4): 83–94. https://doi.org/10.25743/ICT.2018.23.16505 [In Russian]

Lagutin AA, Mordvin EYu, Volkov NV, Revyakin AI (2022) Restoration of the All-Weather Mode of the AIRS/AMSU Hyperspectral System of the AQUA Satellite Using the ATMS Microwave Radiometer of the SUOMI-NPP and NOAA-20 Satellites. Optoelectronics, Instrumentation and Data Processing 58(2): 180–187. https://doi.org/10.3103/S8756699022020066

Makushev KM, Lagutin AA, Volkov NV, Mordvin EYu (2016a) Methane emission from Western Siberia’s wetland ecosystems in the first half of the XXI century. Proceedings of SPIE, 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics 10035: 1003565. https://doi.org/10.1117/12.2248894

Makushev KM, Lagutin AA, Volkov NV, Mordvin EYu (2016b) Validation of the RegCM4/ CLM4.5 regional climate modeling system over the Western Siberia. Proceedings of SPIE, 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics 10035: 100356P. https://doi.org/10.1117/12.2249163

Matthews E, Fung I (1987). Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources [Dataset]. Global Biogeochemical Cycles 1(1): 61–86. https://doi.org/10.1029/GB001i001p00061

Mokhov II, Eliseev AV, Denisov SN (2007) Model diagnostics of variations in methane emissions by wetlands in the second half of the 20th century based on reanalysis data. Doklady Earth Sciences 417: 1293–1297. https://doi.org/10.1134/S1028334X07080375

Montzka SA, Kroll M, Dlugokencky E, Hall B, Jöckel P, Lelieveld J (2011) Small interannual variability of global atmospheric hydroxyl. Science 331(6013): 67–69. https://doi.org/10.1126/science.119764

Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463: 747–756. https://doi.org/10.1038/nature08823

Pal JS, Giorgi F, Xunqiang B, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society 88: 1395–1409. https://doi.org/10.1175/BAMS-88-9-1395

Panikov NS (1995) Taiga wetlands are a global source of atmospheric methane? Priroda 6: 14-25. [In Russian]

Pekel JF, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540(7633): 418–422. https://doi.org/10.1038/nature20584

Peng S, Lin X, Thompson RL, Xi Y, Liu G, Hauglustaine D, Lan X, Poulter B, Ramonet M, Saunois M, Yin Y, Zhang Z, Zheng B, Ciais P (2022) Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature (612): 477–496. https://doi.org/10.1038/s41586-022-05447-w

Peregon A, Maksyutov S, Yamagata Y (2009) An image-based inventory of the spatial structure of West Siberian wetlands. Environmental Research Letters 4(4): 045014. https://doi.org/10.1088/1748-9326/4/4/045014

Prather MJ, Holmes CD, Hsu J (2012) Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophysical Research Letters (39): L09803. https://doi.org/10.1029/2012GL051440

Riley WJ, Subin ZM, Lawrence DM, Swenson SC, Torn MS, Meng L, Mahowald NM, Hess P (2011) Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, and methane biogeochemistry model integrated in CESM. Biogeosciences 8(7): 1925–1953. https://doi.org/10.5194/bg-8-1925-2011

Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, Raymond PA, Dlugokencky EJ, Houweling S, Patra PK, Ciais P, Arora VK, Bastviken D, Bergamaschi P, Blake DR, Brailsford G, Bruhwiler L, Carlson KM, Carrol M, Castaldi S, Chandra N, Crevoisier C, Crill PM, Covey K, Curry CL, Etiope G, Frankenberg C, Gedney N, Hegglin MI, Höglund-Isaksson L, Hugelius G, Ishizawa M, Ito A, Janssens-Maenhout G, Jensen KM, Joos F, Kleinen T, Krummel PB, Langenfelds RL, Laruelle GG, Liu L, Machida T, Maksyutov S, McDonald KC, McNorton J, Miller PA, Melton JR, Morino I, Müller J, Murguia-Flores F, Naik V, Niwa Y, Noce S, O'Doherty S, Parker RJ, Peng C, Peng S, Peters GP, Prigent C, Prinn R, Ramonet M, Regnier P, Riley WJ, Rosentreter JA, Segers A, Simpson IJ, Shi H, Smith SJ, Steele LP, Thornton BF, Tian H, Tohjima Y, Tubiello FN, Tsuruta A, Viovy N, Voulgarakis A, Weber TS, van Weele M, van der Werf GR, Weiss RF, Worthy D, Wunch D, Yin Y, Yoshida Y, Zhang W, Zhang Z, Zhao Y, Zheng B, Zhu Q, Zhu Q, Zhuang Q (2020) The Global Methane Budget 2000–2017. Earth System Science Data 12: 1561–1623. https://doi.org/10.5194/essd-12-1561-2020

Sheng Y, Smith LC, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M, Beilman DW, Dubinin P (2004) A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Global Biogeochemical Cycles 18: GB3004. https://doi.org/10.1029/2003GB002190

Wania R, Melton JR, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T, Avis CA, Chen G, Eliseev AV, Hopcroft PO, Riley WJ, Subin ZM, Tian H, van Bodegom PM, Kleinen T, Yu Z C, Singarayer JS, Zürcher S, Lettenmaier DP, Beerling DJ, Denisov SN, Prigent C, Papa F, Kaplan JO (2013) Present state of global wetland extent and wetland methane modeling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development 6: 617–641. https://doi.org/10.5194/gmd-6-617-2013

Weng F, Zou X, Sun N, Yang H, Tian M, Blackwell WJ, Wang X, Lin L, Anderson K (2013) Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. Journal of Geophysical Research: Atmosperes 118(11): 11187–11200. https://doi.org/10.1002/jgrd.50840

Xi X, Zhuang Q, Kim S, Zhang Z (2023) Methane Emissions From Land and Aquatic Ecosystems in Western Siberia: An Analysis With Methane Biogeochemistry Models. Journal of Geophysical Research: Biogeosciences 128: e2023JG007466. https://doi.org/10.1029/2023JG007466

Zavarzin GA (1995) Microbial methane cycle in cold conditions. Priroda 6: 3–14. [In Russian]

Zhang Z, Zimmermann NE, Stenke A, Li X, Hodson EL, Zhu G, Huang C, Poulter B (2017) Emerging role of wetland methane emissions in driving 21st century climate change. Proceedings of the National Academy of Sciences 114(36): 9647–9652. https://doi.org/10.1073/pnas.1618765114

Zhang Z, Poulter B, Feldman AF, Ying Q, Ciais P, Peng S, Li X (2023) Recent intensification of wetland methane feedback. Nature Climate Change 13: 430–433. https://doi.org/10.1038/s41558-023-01629-0

Zhou T, Shi P, Hui D, Luo Y (2009) Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback. Journal of Geophysical Research 114: G02016. https://doi.org/10.1029/2008JG000850

Zhu Q, Liu J, Peng C, Chen H, Fang X, Jiang H, Yang G, Zhu D, Wang W, Zhou X (2014) Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model. Geoscientific Model Development 7(3): 981–999. https://doi.org/10.5194/gmd-7-981-2014

Acta Biologica Sibirica is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.

Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.

ABS allows authors to deposit manuscripts (currently under review or those for intended submission to ABS) in non-commercial, pre-print servers such as ArXiv.

Authors who publish with this journal agree to the following terms:

 

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...