Horizontal and vertical transmission of microsporidia Nosema pyrausta and Nosema bombycis in the predatory bug Podisus maculiventris (Hemiptera: Pentatomidae)
PDF
XML

Keywords

Parasite-host interactions
infection persistence
insect pathogens
biocontrol
integrated pest management

How to Cite

Rumiantseva, A. S., Ignatieva, A. N., Grushevaya, I. V., Utkuzova, A. M., Binitskaya, N. V., Kononchuk, A. G., Kozlova, E. G., Khodzhash, A. A., & Tokarev, Y. S. (2024). Horizontal and vertical transmission of microsporidia Nosema pyrausta and Nosema bombycis in the predatory bug Podisus maculiventris (Hemiptera: Pentatomidae). Acta Biologica Sibirica, 10, 1625–1645. https://doi.org/10.5281/zenodo.14356492

Abstract

Predatory insects play an important role in the regulation of arthropod’s numbers. When they counteract with the diseased prey, the entomopathogenic microorganisms may be disseminated mechanically or parasitize such secondary hosts. Microsporidia are wide-spread pathogens of insects with diverse host ranges, and infection of entomophagous hosts is not uncommon. In the present study, the spined soldier bug nymphs were fed with the adzuki bean borer larvae infected with Nosema pyrausta (A. Paillot) J. Weiser, 1961 or the silkworm larvae infected with N. bombycis Nägeli, 1857. Both pathogens were infective to the predator at the prevalence level of 15-30%. The former pathogen displayed a decrease of prevalence level in the filial generation to as low as 5 % and no infection in consequent generations. The latter could only be transmitted to bugs horizontally and no infections in the filial generation was found. This indicates low (or no) risk of vertical transmission of these two pathogens, making them suitable for combined application with the predatory bug in the integrated pest management programmes.

https://doi.org/10.5281/zenodo.14356492
PDF
XML

References

Abbas MST, Boucias DG (1984) Interaction between nuclear polyhedrosis virus-infected Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae and predator Podisus maculiventris (Say) (Hemiptera: Pentatomidae). Environmental Entomology 13(2): 599–602. https://doi.org/10.1093/ee/13.2.599

Aldrich JR, Cantelo WW (1999) Suppression of Colorado potato beetle infestation by pheromone‐mediated augmentation of the predatory spined soldier bug, Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Agricultural and Forest Entomology 1: 209–217. https://doi.org/10.1046/j.1461-9563.1999.00026.x

Amarasekare KG, Edelson JV (2004) Effect of temperature on efficacy of insecticides to differential grasshopper (Orthoptera: Acrididae). Journal of Economic Entomology 97(5): 1595–1602. https://doi.org/10.1603/0022-0493-97.5.1595

Avery PB, George J, Markle L, Martini X, Rowley AL, Meagher RL, Barger RE, Duren EB, Dawson JS, Cave RD (2022) Choice behavior of the generalist pentatomid predator Podisus maculiventris when offered lepidopteran larvae infected with an entomopathogenic fungus. Biological Control 67: 201–211. https://doi.org/10.1007/s10526-021-10124-4

Babin A, Schurr F, Rivière MP, Chauzat MP, Dubois E (2022) Specific detection and quantification of three microsporidia infecting bees, Nosema apis, Nosema ceranae, and Nosema bombi, using probe-based real-time PCR. European Journal of Protistology 86: 125935. https://doi.org/10.1016/j.ejop.2022.125935

Becnel JJ, Andreadis TG (1999) Microsporidia in insects. In: Wittner M, Weiss LM (Eds) The Microsporidia and Microsporidiosis. American Society for Microbiology Press, Washington, DC, 447e501.

Biddinger DJ, Leslie TW, Joshi NK (2014) Reduced-risk pest management programs for Eastern US peach orchards: effects on arthropod predators, parasitoids, and select pests. Journal of Economic Entomology 107(3): 1084–1091. https://doi.org/10.1603/EC13441

Biever KD, Andrews PL, Andrews PA (1982) Use of a predator, Podisus maculiventris, to distribute virus and initiate epizootics. Journal of Economic Entomology 75(1): 150–152. https://doi.org/10.1093/jee/75.1.150

Bird AE, Hesketh H, Cross JV, Copland M (2004) The common black ant, Lasius niger (Hymenoptera: Formicidae), as a vector of the entomopathogen Lecanicillium longisporum to rosy apple aphid, Dysaphis plantaginea (Homoptera: Aphididae). Biocontrol Science and Technology 14: 757–767. https://doi.org/10.1080/09583150410001720716

Brooks WM (1988) Entomogenous protozoa. In: Ignoffo CM (Ed) Handbook of Natural Pesticides. Vol. V. Microbial Insecticides, Part A, Entomogenous Protozoa and Fungi. CRC Press, Inc., Boca Raton, 1–149.

Campbell C, van Frankenhuyzen K, Smith S (2007) Incubation period, spore egestion and horizontal transmission of Nosema fumiferanae (Microsporidia: Nosematidae) in spruce budworm (Choristoneura sp., Lepidoptera: Tortricidae): The role of temperature and dose. Journal of Invertebrate Pathology 94(3): 204–210. https://doi.org/10.1016/j.jip.2006.11.005

Capinera JL, Barbosa P (1975) Transmission of nuclear-polyhedrosis virus to gypsy moth larvae by Calosoma sycophanta. Annals of the Entomological Society of America 68(3): 593–594. https://doi.org/10.1093/aesa/68.3.593

Carvalho VFP, Vacari AM, Pomari AF, De Bortoli CP, Ramalho DG, De Bortoli SA (2012) Interaction between the predator Podisus nigrispinus (Hemiptera: Pentatomidae) and the entomopathogenic bacteria Bacillus thuringiensis. Environmental Entomology 41(6): 1454–1461. https://doi.org/10.1603/EN12060

Chakrabarty S, Saha AK, Manna B, Kumar SN (2013) Secondary contamination is the main source for spread of Nosema bombycis resulting in outbreak of pebrine disease in Bombyx mori L. International Journal of Industrial Entomology 27(2): 282–288. https://doi.org/10.1002/9780470015902.a0022555

Cooper DJ (1981) The role of predatory Hemiptera in disseminating a nuclear polyhedrosis virus of Heliothis punctiger. Australian Journal of Entomology 20(2): 145–150. https://doi.org/10.1111/j.1440-6055.1981.tb01017.x

Cross P (2013) Pesticide hazard trends in orchard fruit production in Great Britain from 1992 to 2008: a time‐series analysis. Pest Management Science 69(6): 768–774. https://doi.org/10.1002/ps.3436

de Azeredo Morgado MG, Passos CJS, Garnier J, De Lima LA, de Alcântara Mendes R, Samson-Brais É, Lucotte M (2023) Large-scale agriculture and environmental pollution of ground and surface water and sediment by pesticides in the Brazilian Amazon: the case of the santarém region. Water, Air, & Soil Pollution 234(3): 150. https://doi.org/10.1007/s11270-023-06152-8

de Castro AA, Poderoso JCM, Ribeiro RC, Legaspi JC, Serrão JE, Zanuncio JC (2015) Demographic parameters of the insecticide-exposed predator Podisus nigrispinus: implications for IPM. Biological Control 60: 231–239. https://doi.org/10.1007/s10526-014-9639-y

De Clercq P (2000) Predaceous stinkbugs (Pentatomidae: Asopinae). In: Schaefer CW, Panizzi AR (Eds) Heteroptera of economic importance. CRC Press, Boca Raton, Florida, 759–812. https://doi.org/10.1201/9781420041859

De Clercq P, Degheele D (1992) A meat-based diet for rearing the predatory stink bugs Podisus maculiventris and Podisus sagitta [Heteroptera: Pentatomidae]. Entomophaga 37: 149–157.

De Clercq P, Degheele D (1994) Laboratory measurement of predation by Podisus maculiventris and P. sagitta (Hemiptera: Pentatomidae) on beet armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 87(1): 76–83. https://doi.org/10.1093/jee/87.1.76

De Clercq P, Merlevede F, Tirry L (1998) Unnatural Prey and Artificial Diets for Rearing Podisus maculiventris (Heteroptera: Pentatomidae). Biological Control 12(2): 137–142. https://doi.org/10.1006/bcon.1998.0611

de Nardo EAB, Maia AHN, Watanabe MA (2001) Effect of a formulation of Anticarsia gemmatalis (Lepidoptera: Noctuidae) nuclear polyhedrosis virus on the predator Podisus nigrispinus (Heteroptera: Pentatomidae: Asopinae), using the fertility life table parameters. Environmental Entomology 30: 1164–1173. https://doi.org/10.1603/0046-225X-30.6.1164

Desurmont G, Weston PA (2008) Predation by Podisus maculiventris (Say) (Hemiptera: Pentatomidae) on viburnum leaf beetle, Pyrrhalta viburni (Paykull) (Coleoptera: Chrysomelidae), under laboratory and field conditions. Environmental Entomology 37(5): 1241–1251. https://doi.org/10.1093/ee/37.5.1241

Dolzhenko VI, Laptiev AB (2021) Modern range of plant protection means: biological efficiency and safety. Plodorodie 3(120): 71–75. https://doi.org/10.25680/S19948603.2021.120.13 [In Russian with English summary]

Down RE, Cuthbertson AG, Mathers JJ, Walters KF (2009) Dissemination of the entomopathogenic fungi, Lecanicillium longisporum and L. muscarium, by the predatory bug, Orius laevigatus, to provide concurrent control of Myzus persicae, Frankliniella occidentalis and Bemisia tabaci. Biological Control 50(2): 172–178. https://doi.org/10.1016/j.biocontrol.2009.03.010

Down RE, Bell HA, Matthews HJ, Kirkbride‐Smith AE, Edwards JP (2004) Dissemination of the biocontrol agent Vairimorpha necatrix by the spined soldier bug, Podisus maculiventris. Entomologia Experimentalis et Applicata 110(2): 103–114. https://doi.org/10.1111/j.0013-8703.2004.00122.x

Dwivedi SA, Sonawane VK, Pandit TR (2022) Review on the impact of insecticides utilization in crop ecosystem: Their prosperity and threats. In: Ranz RER (Ed.) Insecticides-Impact and Benefits of Its Use for Humanity. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.100385

Fisher RA (1992) Statistical Methods for Research Workers. In: Kotz S, Johnson NL (Eds) Breakthroughs in Statistics. Springer Series in Statistics. Springer, New York, NY, USA, 66–70. https://doi.org/10.1007/978-1-4612-4380-9_6

Flick AJ, Acevedo MA, Elderd BD (2016) The negative effects of pathogen-infected prey on predators: a meta-analysis. Oikos 125: 1554–1560. https://doi.org/10.1111/oik.03458

Frolov AN, Berim MN, Grushevaya IV (2019) Rearing of trilobed male uncus Ostrinia species in laboratory for experimental purposes. Vestnik zashchity rasteniy 3(101): 58–62. https://doi.org/10.31993/2308-6459-2019-3(101)-58-62

Futerman PH, Layen SJ, Kotzen ML, Franzen C, Kraaijeveld AR, Godfray HCJ (2006) Fitness effects and transmission routes of a microsporidian parasite infecting Drosophila and its parasitoids. Parasitology 132(4): 479–492. https://doi.org/10.1017/S0031182005009339

Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Oñate JJ, Guerrero I, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology 11(2): 97–105. https://doi.org/10.1016/j.baae.2009.12.001

Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Philosophical transactions of the Royal Society B: biological sciences 369: 20120273. http://dx.doi.org/10.1098/rstb.2012.0273

Goertz D, Hoch G (2013) Influence of the forest caterpillar hunter Calosoma sycophanta on the transmission of microsporidia in larvae of the gypsy moth Lymantria dispar. Agricultural and Forest Entomology 15(2): 178. https://doi.org/10.1111/afe.12000

Goertz D, Hoch G (2008) Horizontal transmission pathways of terrestrial microsporidia: A quantitative comparison of three pathogens infecting different organs in Lymantria dispar L. (Lep.: Lymantriidae) larvae. Biological Control 44(2): 196–206. https://doi.org/10.1016/j.biocontrol.2007.07.014

Goertz D, Hoch G (2011) Modeling horizontal transmission of microsporidia infecting gypsy moth, Lymantria dispar (L.), larvae. Biological Control 56(3): 263–270. https://doi.org/10.1016/j.biocontrol.2010.11.013

Grushevaya I, Ignatieva A, Tokarev Y (2020) Susceptibility of three species of the genus Ostrinia (Lepidoptera: Crambidae) to Nosema pyrausta (Microsporidia: Nosematida). BIO Web of Conf EDP Sciences 21: 00040. https://doi.org/10.1051/bioconf/20202100040

Grushevaya IV, Ignatieva AN, Malysh SM, Senderskiy IV, Zubarev IV, Kononchuk AG (2018) Spore dimorphism in Nosema pyrausta (Microsporidia, Nosematidae): From morphological evidence to molecular genetic verification. Acta Protozoologica 57: 49– 52. https://doi.org/10.1017/S0031182018001737

Grushevaya IV, Senderskiy IV, Zubarev IV, Tokarev YS (2021) Transovarial transmission of Nosema pyrausta in three generations of Ostrinia nubilalis in laboratory tests. Entomologia Experimentalis et Applicata 169(11): 1057–1060. https://doi.org/10.1111/eea.13100

Gupta RK, Gani M, Jasrotia P, Srivastava K (2013) Development of the predator Eocanthecona furcellata on different proportions of nucleopolyhedrovirus infected Spodoptera litura larvae and potential for predator dissemination of virus in the field. Biological Control 58: 543–552. https://doi.org/10.1007/s10526-013-9515-1

Haddi K, Turchen LM, Viteri Jumbo LO, Guedes RN, Pereira EJ, Aguiar RW, Oliveira EE (2020) Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Management Science 76(7): 2286–2293. https://doi.org/10.1002/ps.5837

Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Han M-S, Watanabe H (1998) Transovarian transmission of two microsporidia in the silk-worm, Bombyx mori and disease occurrence in progeny population. Journal of Invertebrate Pathology 51(1): 41–45. https://doi.org/10.1016/0022-2011(88)90086-9

Hare JD (1990) Ecology and management of the Colorado potato beetle. Annual Review of Entomology 35: 81–100. https://doi.org/10.1146/annurev.en.35.010190.000501

Hatcher MJ, Dick JTA, Dunn AM (2014) Parasites that change predator or prey behavior can have keystone effects on community composition. Biology Letters 10: 20130879. https://doi.org/10.1098/rsbl.2013.0879

He X, Deng H, Hwang HM (2019) The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis 27(1): 1–21. https://doi.org/10.1016/j.jfda.2018.12.002

Kaya HK (1979) Microsporidan spores: retention of infectivity after passage through the gut of the assassin bug, Zelus exsanguis (Stal). In: Proceedings of the Hawaiian Entomological Society 13(1): 91–94.

Kevan PG, Shipp L, Smagghe G (2020) Ecological intensification: Managing biocomplexity and biodiversity in agriculture through pollinators, pollination and deploying biocontrol agents against crop and pollinator diseases, pests and parasites. In: Smagghe G, Boecking O, Maccagnani B, Mänd M, Kevan PG (Eds) Entomovectoring for Precision Biocontrol and Enhanced Pollination of Crops. Springer Switzerland, 19–51. https://doi.org/10.1007/978-3-030-18917-4_2

Kudsk P, Jørgensen LN, Ørum JE (2018) Pesticide Load – A new Danish pesticide risk indicator with multiple applications. Land Use Policy 70: 384–393. https://doi.org/10.1016/j.landusepol.2017.11.010

Lewis LC, Sumerford DV, Bing LA, Gunnarson RD (2006) Dynamics of Nosema pyrausta in natural populations of the European corn borer, Ostrinia nubilalis: A six-year study. Biological Control 51: 627–642. https://doi.org/10.1007/s10526-005-2937-7

Li Z, Wang Y, Wang L, Zhou Z (2018) Molecular and biochemical responses in the midgut of the silkworm, Bombyx mori, infected with Nosema bombycis. Parasites & Vectors 11: 1–10. https://doi.org/10.1186/s13071-018-2755-2

Lin T, Zeng Z, Chen Y, You Y, Hu J, Yang F, Wei H (2021) Compatibility of six reduced-risk insecticides with Orius strigicollis (Heteroptera: Anthocoridae) predators for controlling Thrips hawaiiensis (Thysanoptera: Thripidae) pests. Ecotoxicology and Environmental Safety 226: 112812. https://doi.org/10.1016/j.ecoenv.2021.112812

Litwin A, Nowak M, Różalska S (2020) Entomopathogenic fungi: unconventional applications. Reviews in Environmental Science and Bio/Technology 19(1): 23–42. https://doi.org/10.1007/s11157-020-09525-1

López Jr JD, Ridgway RL, Pinnell RE (1976) Comparative efficacy of four insect predators of the bollworm and tobacco budworm. Environmental Entomology 5(6): 1160–1164. https://doi.org/10.1093/ee/5.6.1160

Ma Z, Li C, Pan G, Li Z, Han B, Xu J, Lan X, Chen J, Yang D, Chen Q, Sang Q, Ji X, Li T, Long M, Zhou Z (2013) Genome-Wide Transcriptional Response of Silkworm (Bombyx mori) to Infection by the Microsporidian Nosema bombycis. PLoS ONE 8(12): e84137. https://doi.org/10.1371/journal.pone.0084137

Malysh JM, Ignatieva AN, Artokhin KS, Frolov AN, Tokarev YS (2018) Natural infection of the beet webworm Loxostege sticticalis L. (Lepidoptera: Crambidae) with three Microsporidia and host switching in Nosema ceranae. Parasitology Research 117(9): 3039–3044. https://doi.org/10.1007/s00436-018-5987-3

Malysh YuM, Tokarev YuS, Sitnikova NV, Kononchuk AG, Grushetskaya TA, Frolov AN (2011) Incidence of microsporidian infection of stem borers of the genus Ostrinia (Lepidoptera: Crambidae) in the Krasnodar territory. Parazitologiya 45(3): 234–244. [In Russian with English summary]

Mansour R, Biondi A (2021) Releasing natural enemies and applying microbial and botanical pesticides for managing Tuta absoluta in the MENA region. Phytoparasitica 49(2): 179–194. https://doi.org/10.1007/s12600-020-00849-w

Marti Jr OG, Hamm JJ (1985) Effect of Vairimorpha sp. on survival of Geocoris punctipes in the laboratory. Journal of Entomological Science 20(3): 354–358. https://doi.org/10.18474/0749-8004-20.3.354

Möhring N, Ingold K, Kudsk P, Martin-Laurent F, Niggli U, Siegrist M, Studer B, Walter A, Finger R (2020) Pathways for advancing pesticide policies. Nature food 1(9): 535–540. https://doi.org/10.1038/s43016-020-00141-4

Pell JK, Vandenberg JD (2002) Interactions among the aphid Diuraphis noxia, the entomopathogenic fungus Paecilomyces fumosoroseus and the coccinellid Hippodamia convergens. Biocontrol Science and Technology 12(2): 217–224. https://doi.org/10.1080/09583150120124478

Roy HE, Pell JK, Alderson PG (2001) Targeted dispersal of the aphid pathogenic fungus Erynia neoaphidis by the aphid predator Coccinella septempunctata. Biocontrol Science and Technology 11(1): 99–110. https://doi.org/10.1080/09583150020029781

Saito T, Bjørnson S (2006) Horizontal transmission of a microsporidium from the convergent lady beetle, Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae), to three coccinellid species of Nova Scotia. Biological Control 39(3): 427–433. https://doi.org/10.1016/j.biocontrol.2006.06.012

Saito T, Bjørnson S (2013) The convergent lady beetle, Hippodamia convergens Guérin-Méneville and its endoparasitoid Dinocampus coccinellae (Schrank): the effect of a microsporidium on parasitoid development and host preference. Journal of Invertebrate Pathology 113(1): 18–25. https://doi.org/10.1016/j.jip.2013.01.003

Sajap AS, Lewis LC (1989) Impact of Nosema pyrausta (Microsporida: Nosematidae) on a predator, Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology 18(1): 172–176. https://doi.org/10.1093/ee/18.1.172

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences 74(12): 5463–5467.

Schuld M, Madel G, Schmuck R (1999) Impact of Vairimorpha sp. (Microsporidia: Burnellidae) on Trichogramma chilonis (Hymenoptera, Trichogrammatidae), a hymenopteran parasitoid of the cabbage moth, Plutella xylostella (Lepidoptera, Yponomeutidae). Journal of Invertebrate Pathology 74(2): 120–126. https://doi.org/10.1006/jipa.1999.4865

Sedaratian A, Fathipour Y, Talaei-Hassanloui R (2014) Deleterious effects of Bacillus thuringiensis on biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera. Biological Control 59: 89–98. https://doi.org/10.1007/s10526-013-9531-1

Sedaratian-Jahromi A (2021) Effects of entomopathogens on insect predators and parasitoids. In: Khan MA, Ahmad W (Eds) Microbes for Sustainable Insect Pest Management: Hydrolytic Enzyme & Secondary Metabolite. Springer, Cham, Switzerland, 183–231. https://doi.org/10.1007/978-3-030-67231-7_9

Siegel JP, Maddox JV, Ruesink WG (1988) Seasonal progress of Nosema pyrausta in the European corn borer, Ostrinia nubilalis. Journal of Invertebrate Pathology 52: 130–136. https://doi.org/10.1016/0022-2011(88)90111-5

Simões RA, Feliciano JR, Solter LF, Delalibera JrI (2015) Impacts of Nosema sp. (Microsporidia: Nosematidae) on the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). Journal of Invertebrate Pathology 129: 7–12. https://doi.org/10.1016/j.jip.2015.05.006

Smirnoff WA, Eichhorn O (1970) Diseases affecting predators of Adelges spp. on fir trees in Germany, Switzerland, and Turkey. Journal of Invertebrate Pathology 15(1): 6–9. https://doi.org/10.1016/0022-2011(70)90091-1

Solter LF, Becnel JJ, Vávra J (2012) Research methods for entomopathogenic microsporidia and other protists. In: Lacey LA (Ed) Manual of Techniques in Invertebrate Pathology 12: 329–371. https://doi.org/10.1016/B978-0-12-386899-2.00011-7

Sparks TC, Nauen R (2015) IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology 121: 122–128. https://doi.org/10.1016/j.pestbp.2014.11.014

Sreelakshmi B, Induja S, Adarsh PP, Rahul HL, Arya SM, Aswana S, Haripriya R, Aswathy BR, Manoj PK, Vishnudasan D (2021) Drought stress amelioration in plants using green synthesised iron oxide nanoparticles. Materials Today: Proceedings 41: 723–727. https://doi.org/10.1016/j.matpr.2020.05.801

Stamopoulos DC, Chloridis A (1994) Predation rates, survivorship and development of Podisus maculiventris (Het.: Pentatomidae) on larvae of Leptinotarsa decemlineata (Col.: Chrysomelidae) and Pieris brassicae (Lep.: Pieridae), under field conditions. Entomophaga 39: 3–9. https://doi.org/10.1007/BF02373489

Stejskal V, Vendl T, Aulicky R, Athanassiou C (2021) Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects 12(7): 590. https://doi.org/10.3390/insects12070590

Suraporn S, Terenius O (2021) Supplementation of Lactobacillus casei reduces the mortality of Bombyx mori larvae challenged by Nosema bombycis. BMC Research Notes 14: 398. https://doi.org/10.1186/s13104-021-05807-1

Tang FHM, Lenzen M, McBratney A, Maggi F (2021) Risk of pesticide pollution at the global scale. Nature Geoscience 14: 206–210. https://doi.org/10.1038/s41561-021-00712-5

Thieltges DW, Amundsen PA, Hechinger RF, Johnson PT, Lafferty KD, Mouritsen KN, Preston DL, Reise K, Zander CD, Poulin R (2013) Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission. Oikos 122(10): 1473–1482. https://doi.org/10.1111/j.1600-0706.2013.00243.x

Tokarev YS, Simakova AV, Timofeev SA, Malysh JM, Sokolova ОI, Issi IV (2016) Host specificity in microsporidia. Parasitologia 50(6): 446–459. [In Russian with English summary]

Tokarev YS, Huang WF, Solter LF, Malysh JM, Becnel JJ, Vossbrinck CR (2020) A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. Journal of Invertebrate Pathology 169: 107279. https://doi.org/10.1016/j.jip.2019.107279

Valera F, Martín-Hernandez R, Higes M (2011) Evaluation of large-scale dissemination of Nosema ceranae spores by European beeeaters Merops apiaster. Environmental Microbiology Reports 3: 47–53. https://doi.org/10.1111/j.1758-2229.2010.00186.x

van Frankenhuyzen K, Ebling P, McCron B, Ladd T, Gauthier D, Vossbrinck C (2004) Occurrence of Cystosporogenes sp. (Protozoa, Microsporidia) in a multi-species insect production facility and its elimination from a colony of the eastern spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Journal of Invertebrate Pathology 87(1): 16–28. https://doi.org/10.1016/j.jip.2004.06.001

van Frankenhuyzen K, Nystrom C, Liu Y (2007) Vertical transmission of Nosema fumiferanae (Microsporidia: Nosematidae) and consequences for distribution, post-diapause emergence and dispersal of second-instar larvae of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Journal of Invertebrate Pathology 96(2): 173–182. https://doi.org/10.1016/j.jip.2007.03.017

Vivan LM, Torres JB, Fernandes PLS (2017) Activity of selected formulated biorational and synthetic insecticides against larvae of Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 110(1): 118–126. https://doi.org/10.1093/jee/tow244

Vogelstein B, Gillespie D (1979) Preparative and analytical purification of DNA from agarose. The Proceedings of the National Academy of Sciences 76(2): 615–619.

Wang-Peng S, Zheng X, Jia WT, Li AM, Camara I, Chen HX, Tan SQ, Liu YQ, Ji R (2018) Horizontal transmission of Paranosema locustae (Microsporidia) in grasshopper populations via predatory natural enemies. Pest Management Science 74(11): 2589–2593. https://doi.org/10.1002/ps.5047

Young OP, Hamm JJ (1985) Compatibility of two fall armyworm pathogens with the predaceous beetle, Calosoma sayi (Coleoptera: Carabidae). Journal of Entomological Science 20(2): 212–218. https://doi.org/10.18474/0749-8004-20.2.212

Zhang X, Feng H, He J, Liang X, Zhang N, Shao Y, Zhang F, Lu X (2022) The gut commensal bacterium Enterococcus faecalis LX10 contributes to defending against Nosema bombycis infection in Bombyx mori. Pest Management Science 78(6): 2215–2227. https://doi.org/10.1002/ps.6846

Zhu H, Kim JJ (2012) Target-oriented dissemination of Beauveria bassiana conidia by the predators, Harmonia axyridis (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) for biocontrol of Myzus persicae. Biocontrol Science and Technology 22(4): 393–406. https://doi.org/10.1080/09583157.2012.661843

Zimmermann G, Huger AM, Langenbruch GA, Kleespies RG (2016) Pathogens of the European corn borer, Ostrinia nubilalis, with special regard to the microsporidium Nosema pyrausta. Journal of Pest Science 89(2): 329–346. https://doi.org/10.1007/s10340-016-0749-4

Acta Biologica Sibirica is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.

Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.

ABS allows authors to deposit manuscripts (currently under review or those for intended submission to ABS) in non-commercial, pre-print servers such as ArXiv.

Authors who publish with this journal agree to the following terms:

 

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Downloads

Metrics

PDF views
69
Dec 13 '24Dec 16 '24Dec 19 '24Dec 22 '24Dec 25 '24Dec 28 '24Dec 31 '24Jan 01 '25Jan 04 '25Jan 07 '25Jan 10 '257.0
|
Other format views
3