Abstract
Samples of surface water were taken in the littoral zone of the Aya and Tutay Bays (the west shore of Lake Baikal), Mukhor Bay (the Maloe More Strait), Posolsky Sor Bay and near Turka village (the east shore of the lake) during the cyanobacterial bloom in summer 2018. Saxitoxin was determined by a procedure based on chemical modification of saxitoxin with 2,4-dinitrophenylhydrazine and the following identification of saxitoxin hydrazone by means of liquid chromatography–mass spectrometry. A modified procedure was proposed for the samples with a low predicted concentration of saxitoxin. It was demonstrated that the concentration of saxitoxin in all the samples was lower than the maximum allowable concentration for drinking water (< 3 μg/L).
References
Belykh, O.I., Gladkikh, A.S., Sorokovikova, E.G., Tikhonova, I.V., Potapov, S.A., & Butina, T.V. (2015a). Saxitoxin – Producing cyanobacteria in Lake Baikal. Sibirskiy Ekologicheskiy Zhurnal, 2, 231–239. DOI: 10.1134/S199542551502002X
Belykh, O.I., Glagkikh, A.S., Tikhonova I.V., Kuz'min, A.V., Mogil'nikova T.A., Fedorova, G.A., & Sorokovikova, E.G. (2015b). Identification of Cyanobacterial Producers of Shellfish Paralytic Toxins in Lake Baikal and Reservoirs of the Angara River. Microbiologia, 84 (1), 120–122. DOI: https://doi.org/10.1134/S0026261715010038
Chorus, I. (2012). Current Approaches to Cyanotoxin Risk Assessment, Risk Management and Regulations in Different Countries. Umweltbundesamt: Dessau-Roßlau, Germany.
Cusick, K., & Sayler, G.S. (2013). An Overview on the Marine Neurotoxin, Saxitoxin: Genetics, Molecular Targets, Methods of Detection and Ecological Functions. Mar. Drugs, 11, 991–1018. DOI: https://doi.org/10.3390/md11040991
Deeds, J.R., Landsberg, J.H., Etheridge, S.M., Pitcher, G.C., & Longan, S.W. (2008). Non-traditional vectors for paralytic shellfish poisoning. Mar. Drugs, 6(2), 308–348. DOI: https://doi.org/10.3390/md20080015
Funari, E. (2016). Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit. Rev. Toxicol., 46(5), 385–419. DOI: https://doi.org/10.3109/10408444.2015.1137865
Grachev, M., Zubkov, I., Tikhonova, I., Ivacheva, M., Kuzmin, A., Sukhanova, E., Sorokovikova, E., Fedorova, G, Galkin, A., Suslova, M., Netsvetaeva, O., Eletskaya, E., Pogodaeva, T., Smirnov, V., Ivanov, A., Shagun, V., Minaev, V., & Belykh, O. (2018). Extensive contamination of water with saxitoxin near the dam of the Irkutsk hydropower station reservoir (East Siberia, Russia). Toxins, 10, 402, 1–12. DOI: https://doi.org/10.3390/toxins10100402
Jančula, D., Straková, L., Sadílek, J., Maršálek, B., & Babica, P. (2014). Survey of cyanobacterial toxins in Czech water reservoirs – the first observation of neurotoxic saxitoxins. Environ. Sci. Pollut. Res., 21, 8006–8015. DOI: https://doi.org/-10.1007/s11356-014-2699-9
Kaas, H., & Henriksen, P. (2000). Saxitoxins (PSP toxins) in Danish lakes. Wat. Res., 34 (7), 2089–2097. DOI: 10.1016/S0043-1354(99)00372-3
Kleinteich, J., Hildebrand, F., Wood, S.A., Cirs, S., Agha, R., Quesada, A., Pearce, D.A., Convey, P., Kpper, F.C., & Dietrich, D.R. (2014). Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: A pyrosequencing approach. Antarct. Sci., 26, 521–532. DOI: 10.1017/S0954102014000145
Kozhova, O.M. (1959). Distribution of phytoplankton in Lake Baikal. Botanicheskii Zhurnal, 44, 808–811.
Kozhova, O.M. (1964). Fitoplankton Irkutskogo vodohranilishcha. Biologiya Irkutskogo vodohranilishcha. Moscow, Nauka. (in Russian)
Llewellyn, L.E. (2006). Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat. Prod. Rep., 23, 200–222. DOI: 10.1039/b501296c
Patocka, J., & Streda, L. (2002). Brief review of natural nonprotein neurotoxins. Ed. R. Price, ASA newsletter, 02-2(89), 16-24.
Rapala, J., Robertson, A., Negri, A.P., Berg, K.A., Tuomi, P., Lyra, C., Erkomaa, K., Lahti, K., Hoppu, K., & Lepisto, L. (2005). First Report of Saxitoxin in Finnish Lakes and Possible Associated Effects on Human Health. Environ. Toxicol., 20 (3), 331–340. DOI: https://doi.org/10.1002/tox.20109Testai, E., Scardala, S., Vichi, S., Buratti, F. &
Testai, E., Scardala, S., Vichi, S., Buratti, F. & Funari, E. (2016). Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit. Rev. Toxicol., 46(5), 385–419. DOI: https://doi.org/10.3109/10408444.2015.1137865
Van Dolah, F.M. (2000). Marine algal toxins: Origins, health effects, and their increased occurrence. Environ. Health Perspect., 108(Suppl 1), 133–141. DOI: 10.1289/ehp.00108s1133
Westrick, J., Szlag, D., Southwell, B., & Sinclair, J. (2010). A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Anal. Bional. Chem., 397, 1705–1714.
Wiese, M., D'Agostino, P.M., Mihali, T.K., & Neilan, B.A. (2010). Neurotoxic alkaloids: saxitoxin and its analogs. Mar. Drugs, 8(7), 2185–211. DOI: https://doi.org/10.3390/md8072185

This work is licensed under a Creative Commons Attribution 4.0 International License.