ТЕРМОХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ДИОКСАНЛИГНИНА СОЛОМЫ ПШЕНИЦЫ В СРЕДЕ СУБ/СВЕРХКРИТИЧЕСКОГО ДИМЕТИЛКАРБОНАТА
УДК 662.73 543.544.3
Аннотация
Целью исследования являлось изучение термохимических превращений диоксанлигнина соломы пшеницы в среде суб/сверхкритического диметилкарбоната. Эксперимент выполнен в автоклаве в интервале температур 200–350 °С. Низкомолекулярные продукты обработки выделяли из жидких продуктов экстракцией гексаном. Их состав исследовали методом ГХ-МС. Не растворившийся при обработке диоксанлигнин анализировали методом ИК-спектроскопии. Низкомолекулярные продукты представлены сложными эфирами, альдегидами, кетонами и алкилароматическими соединениями. В их составе идентифицировано 34 соединения, среди которых 12 соединений состава С6–С3, т.е. с углеродным скелетом, соответствующим общепризнанной фенилпропановой единице лигнина. В составе низкомолекулярных продуктов отмечено преобладающее содержание метиловых эфиров ароматических и жирноароматических кислот. Более 95% идентифицированных низкомолекулярных продуктов обработки являются вератровыми соединениями. Получены новые данные о превращениях диоксанлигнина соломы пшеницы в среде суб/сверхкритического диметилкарбоната. Показано, что высокая растворимость диоксанлигнина в субкритическом диметилкарбонате может быть вызвана нарушением межмолекулярного взаимодействия, в том числе водородных связей, между макромолекулами диоксанлигнина в результате термического воздействия и реакций метилирования. В сверхкритических условиях обработки фрагментация макромолекул диоксанлигнина включает процессы радикального разрыва алкиларильных эфирных связей, реакции деалкилирования, дегидратации, метилирования, переэтерификации и деметоксилирования.
Скачивания
Metrics
Литература
Anwar Z., Gulfraz M., Irshad M. Journal of Radiation Research and Applied Sciences, 2014, vol. 7(2), pp. 163–173. DOI: 10.1016/j.jrras.2014.02.003.
Asgher M., Ahmad Z., Iqbal H.M.N. Industrial Crops and Products, 2013, vol. 44, pp. 488–495. DOI: 10.1016/j.indcrop.2012.10.005
Perkins G., Batalha N., Kumar A., Bhaskar T., Konarova M. Renewable and Sustainable Energy Reviews, 2019, vol. 115, article 109400. DOI: 10.1016/j.rser.2019.109400.
Iqbal H.M.N., Kyazze G., Keshavarz T. BioResources, 2013, vol. 8(2), pp. 3157–3176. DOI: 10.15376/biores.8.2.3157-3176.
Yoo C.G., Meng X., Pu Y., Ragauskas A.J. Bioresour Technol., 2020, vol. 301, article 122784. DOI: 10.1016/j.biortech.2020.122784.
Gosselink R.J.A., de Jong E., Guran B., Abächerli A. Ind. Crop Prod., 2004, vol. 20, pp. 121–129. DOI: 10.1016/j.indcrop.2004.04.015.
Fache M., Boutevin B., Caillol S. ACS Sustain. Chem. Eng., 2016, vol. 4(1), pp. 35–46.
Upton B.M., Kasko A.M. Chem. Rev., 2016, vol. 116(4), pp. 2275–2306. DOI: 10.1021/acs.chemrev.5b00345.
Tsujino J., Kawamoto H., Saka S. Wood Science Technology, 2003, vol. 37, pp. 299–307. DOI: 10.1007/s00226-003-0187-3.
Kuznetsov B.N., Malyar Yu.N., Kuznetsova S.A., Grishechko L.I., Kazachenko A.S., Levdanskiy A.V., Pas-tunov A.V., Boyandin A.N., Selzard A. Zhurnal Sibirskogo federal'nogo universiteta. Khimiya, 2016, vol. 9(4), pp. 454–482. DOI: 10.17516/1998-2836-2016-9-4-454-482. (in Russ.).
Abbas K.A., Saeed M.A.E., Abdulamir A.S., Abas H.A. American Journal of Biochemistry and Biotechnology, 2008, vol. 4(4), pp. 345–353. DOI: 10.3844/ajbbsp.2008.345.353.
Khalid K.A., Ahmad A.A., Young T.L.K. Journal of the Japan Institute of Energy, 2017, vol. 96 (8), pp. 255–260. DOI: 10.3775/jie.96.255.
Fomina Ye.S., Yevstaf'yev S.N. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya, 2018, vol. 8, no. 2, pp. 9–18, DOI: 10.21285/2227-2925-2018-8-2-9-18. (in Russ.).
Chudakov I.I. Tr. VINNSGS, 1996, no. 15, pp. 285–290. (in Russ.).
Karmanov A.P., Kocheva L.S., Ovodov Yu.S., Brovko O.S. Teoreticheskaya i prikladnaya ekologiya, 2014, no. 2, pp. 35–40. (in Russ.).
Tundo P. Pure Appl Chem., 2001, vol. 73, pp. 1117–1124. DOI: 10.1351/pac200173071117.
Tundo P., Selva M., Perosa A., Memodi S. J. Org. Chem., 2002, vol. 67, pp. 1071–1077. DOI: 10.1021/jo0057699.
Yevstaf'yev S.N., Fomina Ye.S., Tiguntseva N.P., Shashkina S.S. Izvestiya vuzov. Prikladnaya khimiya i bio-tekhnologiya, 2021, vol. 11, no. 2, pp. 195–204. DOI: 10.21285/2227-2925-2021-11-2-195-204. (in Russ.).
Ekman K.H., Lindberg J.J. Paperija Puu, 1960, vol. 42, pp. 21–22.
Marton J., Adler E. Tappi, 1963, vol. 46, pp. 92–96.
Copyright (c) 2023 Химия растительного сырья
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями:
1. Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале.
2. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале.
3. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу.