CHEMICAL PROCESSING OF AGRICULTURE WASTES INTO VANILLIN, PULP AND GLUCOSE

UDC 661.123

  • Viktor A. Golubkov Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: golubkov.va@icct.krasn.ru
  • Valery E. Tarabanko Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: veta@icct.ru
  • Konstantin L. Kaygorodov Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: kulik@icct.ru
  • Semen L. Shestakov Federal State Autonomous Educational Institution of Higher Education «Northern (Arctic) Federal University named after M.V. Lomonosov» Email: laston85@mail.ru
  • Yulia V. Chelbina Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: agafon5@mail.ru
  • Marina A. Smirnova Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: smirnova.ma@icct.krasn.ru
  • Arkady A. Popov Reshetnev Siberian State University of Science and Technology Email: puzhiy00@mail.ru
  • Andrey M. Skripnikov Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: and-skripnikov@yandex.ru
  • Dmitry O. Vigul Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: beknman@gmail.com
  • Valentina S. Borovkova Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: bing0015@mail.ru

Аннотация

Agrotechnical wastes from processing herbaceous plants consist of lignin and polysaccharides, which can be processed into monomers – phenols and carbohydrates. The prospects of chemical processing of several agrotechnical waste types with a high lignin content (flax shives, sunflower seed husks and buckwheat husks) into vanillin, pulp, and glucose by oxidation and acid hydrolysis were studied. It has been shown that despite the distant phylogenetic relationship of the studied plants, their lignins have a similar structure: they contain a similar amount of methoxyl groups (10–13 wt.% per lignin) and give close yields of aromatic aldehydes upon oxidation with nitrobenzene (17–19%) and oxygen (14–16%). In general, the suitability of agrotechnical wastes for oxidation to aromatic aldehydes determines by the lignin content. Among the studied wastes, flax shives are the most promising feedstock for chemical processing into vanillin and glucose. Cellulose-containing solid residues of oxidation process are more easily hydrolyzed compared to the initial lignocellulosic biomass. The inversion of glucose oligomers during the hydrolysis of cellulose with H2SO4 is limited by the hydrolysis of the tetra- and octamers.

Скачивания

Metrics

PDF views
119
Jan 2024Jul 2024Jan 2025Jul 2025Jan 202625

Биографии авторов

Viktor A. Golubkov , Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

Junior researcher of Laboratory for Catalytic Conversion of Renewable Resources

Valery E. Tarabanko , Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

D.Sc., Professor, Chief researcher of Laboratory Physical and Chemical Study of Materials

Konstantin L. Kaygorodov , Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

Junior researcher of Laboratory Physical and Chemical Study of Materials

Semen L. Shestakov, Federal State Autonomous Educational Institution of Higher Education «Northern (Arctic) Federal University named after M.V. Lomonosov»

Cand. Sc. (Physics and Mathematics), senior researcher of the Core Facility Center «Arktika»

Yulia V. Chelbina , Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

PhD, Junior researcher of Laboratory Physical and Chemi-cal Study of Materials

Marina A. Smirnova, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

PhD, Researcher of Laboratory Physical and Chemical Study of Materials

Arkady A. Popov, Reshetnev Siberian State University of Science and Technology

student

Andrey M. Skripnikov, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

Junior Researcher at the Laboratory of Chemistry of Natural Organic Raw Materials

Dmitry O. Vigul, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

Junior researcher of Laboratory Physical and Chemical Study of Materials

Valentina S. Borovkova, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

Junior researcher of Laboratory for Catalytic Conversion of Renewable Resources

Литература

Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick W.J., Jr., Hallett J.P., Leak D.J., Liotta C.L., Mielenz J.R., Murphy R., Templer R., Tschaplinski T. Science, 2006, vol. 311, no. 5760, pp. 484–489. DOI: 10.1126/science.1114736.

Galkin K.I., Ananikov V.P. ChemSusChem, 2019, vol. 12, no. 13, pp. 2976-2982. DOI: 10.1002/cssc.201900592.

Evstigneyev E.I., Zakusilo D.N., Ryabukhin D.S., Vasilyev A.V. Uspekhi Khimii, 2023, vol. 92, no. 8, pp. 1–16. DOI: 10.59761/RCR5082. (in Russ.).

Tarabanko V.E. Catalysts, 2021, vol. 11, no. 10, pp. 1254. DOI: 10.3390/catal11101254.

Renders T., Van den Bosch S., Koelewijn S.-F., Schutyser W., Sels B. Energy & environmental science, 2017, vol. 10, no. 7, pp. 1551–1557.

Buranov A.U., Mazza G. Industrial Crops and Products, 2008, vol. 28, no. 3, pp. 237–259. DOI: 10.1016/j.indcrop.2008.03.008.

Haykiri-Acma H., Yaman S. Energy Educ. Sci. Technol. Part A., 2010, vol. 24, no. 2, pp. 113–124.

Sharkov V., Dobun A. Hydrolysis and forest chemical industry, 1955, no. 3, pp. 43–56.

Nakamura Y., Ono Y., Saito T., Isogai A. Cellulose, 2019, vol. 26, pp. 6529–6541. DOI: 10.1007/s10570-019-02560-4.

Dziedzic K., Górecka D., Kucharska M., Przybylska B. Food Research International, 2012, vol. 47, no. 2, pp. 279–283. DOI: 10.1016/j.foodres.2011.07.020.

Klintsavich V.N., Flyurik Е.А. Trudy BGTU Seriya 2 №1 - Khimicheskiye tekhnologii, biotekhnologii, geoekologiya, 2020, vol. 229, no. 1, pp. 68–81. (in Russ.).

Tarabanko V.E., Vigul D.O., Kaygorodov K.L., Kosivtsov Y., Tarabanko N., Chelbina Y.V. Biomass Conversion and Biorefinery, 2022, pp. 1–11. DOI: 10.1007/s13399-022-02366-8.

Vangeel T., Schutyser W., Renders T., Sels B.F. Lignin Chemistry, 2020, pp. 53–68.

Tarabanko V. E., Tarabanko N. International Journal of Molecular Sciences, 2017, vol. 18, no. 11, pp. 2421. DOI: 10.3390/ijms18112421.

Kozhevnikov A.Y., Shestakov S.L., Sypalova Y.A. Khimiya Rastitel'nogo Syr'ya, 2023, vol. 2, pp. 5–26. DOI: 10.14258/jcprm.20230211737. (in Russ.).

Tarabanko V.E., Vigul D.O., Kaygorodov K.L., Chelbina Y.V., Mazurova E.V. Catalysts, 2022, vol. 12, no. 9, pp. 1003. DOI: 10.3390/catal12091003.

Seaman J.F. Tappi, 1954, vol. 37, pp. 336–343.

TAPPI Chemical Properties Committee of the Process and Product Quality Division. Acid-insoluble lignin in wood and pulp. TAPPI Standard Test Method T 222 om-02, 2002.

TAPPI Chemical Properties Committee of the Process and Product Quality Division. Solvent extractives of wood and pulp. TAPPI Standard Test Method T 204 cm-97, 1997.

Bolotin D., Chernykh A. Khimiya drevesiny, 1982, no. 5, pp. 109–110. (in Russ.).

Zakis G. Funktsional'nyy analiz lignina. [Functional analysis of lignins and their derivatives]. Riga, 1987, 230 p. (in Russ.).

Vázquez G., Antorrena G., González J., Freire S. Journal of wood chemistry and technology, 1997, vol. 17, no. 1-2, pp. 147–162.

El Mansouri N.-E., Salvadó J. Industrial crops and products, 2007, vol. 26, no. 2, pp. 116–124. DOI: 10.1016/j.indcrop.2007.02.006.

Tarabanko V.E., Kaygorodov K.L., Skiba E.A., Tarabanko N., Chelbina Y.V., Baybakova O.V., Kuznetsov B.N., Djakovitch L. Journal of Wood Chemistry and Technology, 2016, vol. 37, no. 1, pp. 43–51. DOI: 10.1080/02773813.2016.1235583.

Popova Y.A., Shestakov S.L., Belesov A.V., Pikovskoi I.I., Kozhevnikov A.Y. Int J Biol Macromol., 2020, vol. 164, pp. 3814–3822. DOI: 10.1016/j.ijbiomac.2020.08.240.

Popova Y.A., Shestakov S., Kozhevnikov A.Y., Kosyakov D., Sypalov S. Russian Journal of Bioorganic Chemistry, 2020, vol. 46, pp. 1337–1342. DOI: 10.1134/S1068162020070122.

Janga K.K., Hägg M.-B., Moe S.T. BioResources, 2012, vol. 7, no. 1, pp. 391–411.

Englyst H., Wiggins H., Cummings J. Analyst., 1982, vol. 107, no. 1272, pp. 307–318.

Sychev V.V., Malyar Y.N., Skripnikov A.M., Trotsky Y.A., Zaitseva Y.N., Eremina A.O., Borovkova V.S., Taran O.P. Molecules, 2022, vol. 27, no. 24, pp. 8756. DOI: 10.3390/molecules27248756.

Dekker R.F.H., Wallis A.F.A. Biotechnology Letters, 1983, vol. 5, no. 5, pp. 311–316. DOI: 10.1007/bf01141131.

Zhu Y., Liao Y., Lu L., Lv W., Liu J., Song X., Wu J., Li L., Wang C., Ma L., Sels B.F. ACS Catalysis, 2023, vol. 13, no. 12, pp. 7929–7941. DOI: 10.1021/acscatal.3c01309.

Tarabanko V.E., Kaygorodov K.L., Vigul D.O., Tarabanko N., Chelbina Y.V., Smirnova M.A. Journal of Wood Chemistry and Technology, 2020, vol. 40, no. 6, pp. 421–433. DOI: 10.1080/02773813.2020.1835984.

Vigul D.O., Tarabanko V.E., Chelbina Y.V., Levdansky V.A. Catalytic oxidation of Cedar Bark (Pinus Sibirica) with Oxygen to Vanillin and Pulp // Journal of Siberian Federal University. Chemistry, 2021, vol. 14, no. 4, pp. 457–463. DOI: 10.17516/1998-2836-0254.

Kong-Win Chang J., Duret X., Berberi V., Zahedi-Niaki H., Lavoie J.M. Front Chem., 2018, vol. 6, pp. 117. DOI: 10.3389/fchem.2018.00117.

Опубликован
2023-12-15
Как цитировать
1. Golubkov V. A., Tarabanko V. E., Kaygorodov K. L., Shestakov S. L., Chelbina Y. V., Smirnova M. A., Popov A. A., Skripnikov A. M., Vigul D. O., Borovkova V. S. CHEMICAL PROCESSING OF AGRICULTURE WASTES INTO VANILLIN, PULP AND GLUCOSE // Химия растительного сырья, 2023. № 4. С. 137-145. URL: http://journal.asu.ru/cw/article/view/13782.
Выпуск
Раздел
Биополимеры растений