XYLITOL PRODUCTION FROM XYLOSE OVER ZIRCONIA-DOPED SILICA SBA-15 SUPPORTED RUTHENIUM CATALYSTS

UDC 547.455.526, 544.478

  • Viktor Aleksandrovich Golubkov Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: golubkov.va@icct.krasn.ru
  • Yuliya Nikolaevna Zaitseva Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: jnz@icct.ru
  • Sergej Dmitrievich Kirik Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS; Siberian Federal University Email: kiriksd@yandex.ru
  • Anna Olegovna Eremina Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS Email: anna.oleg.er@mail.ru
  • Valentin Vladimirovich Sychev Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS; Siberian Federal University Email: sychev.vv@icct.krasn.ru
  • Oksana Pavlovna Taran Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS; Siberian Federal University Email: taran.op@icct.krasn.ru
Keywords: plant raw materials, hemicelluloses, xylan, xylose, xylitol, hydrogenation, ruthenium, SBA-15

Abstract

Xylitol is an important product of xylan valorization — the main hemicellulose of birch and aspen wood. Xylitol is obtained by direct hydrogenation of xylose. In present study, the xylose was obtained by acid hydrolysis of birch wood xylan. The industrial catalyst for the xylitol production process is Raney nickel. Pyrophoricity, tendency to sintering, Ni leaching and contamination of the product are actual problems of its use. We have developed new supported ruthenium catalysts based on mesoporous silicate SBA-15 doped with zirconia. The proposed method of modification of SBA-15 by doping with zirconia improves the hydrothermal stability. The deposited Ru is present in the form of highly dispersed RuO2 particles and is distributed evenly. The catalysts are stable, safe and environmentally friendly. Their high catalytic activity allows the process to be carried out in very mild conditions – in pure water at 70 °C and a pressure of 5.5 MPa H2. While the catalysts provide 96-99% selectivity for xylitol. The introduction of the developed catalysts into the xylitol production might reduce the product purification cost of and the process energy consumption, thereby improving ecological and economic indicators of deep chemical processing of plant raw materials.

Downloads

Metrics

PDF views
123
Jan 2024Jul 2024Jan 2025Jul 2025Jan 202625

Author Biographies

Viktor Aleksandrovich Golubkov, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

младший научный сотрудник лаборатории каталитических превращений возобновляемых ресурсов

Yuliya Nikolaevna Zaitseva, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

кандидат химических наук, научный сотрудник лаборатории молекулярной спектроскопии и анализа

Sergej Dmitrievich Kirik, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS; Siberian Federal University

доктор химических наук, профессор

Anna Olegovna Eremina, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS

научный сотрудник лаборатории каталитических превращений возобновляемых ресурсов

Valentin Vladimirovich Sychev, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS; Siberian Federal University

младший научный сотрудник лаборатории каталитических превращений возобновляемых ресурсов

Oksana Pavlovna Taran, Institute of Chemistry and Chemical Technology SB RAS, FSC KSC SB RAS; Siberian Federal University

доктор химических наук, профессор, директор

References

Levdansky V.A., Kondrasenko A.A., Levdansky A.V., Kuznetsov B.N. Journal of Siberian Federal University. Chemistry, 2021, vol. 14, no. 3, pp. 325–336. DOI: 10.17516/1998-2836-0241.

Jin X., Hu Z., Wu S., Song T., Yue F., Xiang Z. Carbohydrate polymers, 2019, vol. 215, pp. 235–245. DOI: 10.1016/j.carbpol.2019.03.092.

Kuznetsov B.N., Sudakova I.G., Chudina A.I., Garyntseva N.V., Kazachenko A.S., Skripnikov A.M., Malyar Y.N., Ivanov I.P. Biomass Conversion and Biorefinery, 2022. DOI: 10.1007/s13399-022-02498-x.

Ly K.A., Milgrom P., Rothen M. Pediatric dentistry, 2006, vol. 28, no. 2, pp. 154–163.

Ylikahri R. Advances in Food Research. Academic Press, 1979, pp. 159–180.

Schiweck H.B., Albert & Vogel, Roland & Schwarz, Eugen & K, MARKWART & Lüssem, Bernd & Moser, Matthias & Peters, Siegfried & C, DUSAUTOIS & Lefranc-Millot, Catherine & A, CLEMENT. Sugar Alcohols // Ullmann's Encyclopedia of Industrial ChemistryEdition: 7th Edition Chapter: Sugar Alcohols. 2011. DOI: 10.1002/14356007.a25_413.pub2.

Delgado Arcaño Y., Valmaña García O.D., Mandelli D., Carvalho W.A., Magalhães Pontes L.A. Catalysis Today, 2020, vol. 344, pp. 2–14. DOI: 10.1016/j.cattod.2018.07.060.

García B., Orozco-Saumell A., López Granados M., Moreno J., Iglesias J. ACS Sustainable Chemistry & Engineering, 2021, vol. 9, no. 44, pp. 14857–14867. DOI: 10.1021/acssuschemeng.1c04957.

Cheng S., Martínez-Monteagudo S.I. Asia-Pacific Journal of Chemical Engineering, 2019, vol. 14, no. 1. e2275. DOI: 10.1002/apj.2275.

Hoffer B.W., Crezee E., Mooijman P.R.M., van Langeveld A.D., Kapteijn F., Moulijn J. A. Catalysis Today, 2003, vol. 79–80, pp. 35–41. DOI: 10.1016/S0920-5861(03)00040-3.

Michel C., Gallezot P. ACS Catalysis, 2015, vol. 5, no. 7, pp. 4130–4132. DOI: 10.1021/acscatal.5b00707.

Ahmed M.J., Hameed B.H. Journal of the Taiwan Institute of Chemical Engineers, 2019, vol. 96, pp. 341–352. DOI: 10.1016/j.jtice.2018.11.028.

Kusserow B., Schimpf S., Claus P. Advanced Synthesis & Catalysis, 2003, vol. 345, no. 1-2, pp. 289–299. DOI: 10.1002/adsc.200390024.

Singh S., Kumar R., Setiabudi H.D., Nanda S., Vo D.-V.N. Applied Catalysis A: General, 2018, vol. 559, pp. 57–74. DOI: 10.1016/j.apcata.2018.04.015.

Kozlova S.A., Kirik S.D. Microporous and Mesoporous Materials, 2010, vol. 133, no. 1-3, pp. 124–133. DOI: 10.1016/j.micromeso.2010.04.024.

Sabbaghi A., Lam F. L. Y., Hu X. Journal of Molecular Catalysis A: Chemical, 2015, vol. 409, pp. 69–78. DOI: 10.1016/j.molcata.2015.08.005.

Gromov N., Medvedeva T., Panchenko V., Taran O., Timofeeva M., Parmon V. Catalysis in Industry, 2023, vol. 15, no. 1, pp. 87–98. DOI: 10.1134/S2070050421010050.

Gromov N.V., Medvedeva T.B., Rodikova Y.A., Timofeeva M.N., Panchenko V.N., Taran O.P., Kozhevnikov I.V., Parmon V.N. Bioresource Technology, 2021, vol. 319, pp. 124122. DOI: 10.1016/j.biortech.2020.124122.

Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D. Journal of the American Chemical Society, 1998, vol. 120, no. 24, pp. 6024–6036. DOI: 10.1021/ja974025i.

Thunyaratchatanon C., Luengnaruemitchai A., Chaisuwan T., Chollacoop N., Chen S.-Y., Yoshimura Y. Microporous and Mesoporous Materials, 2017, vol. 253, pp. 18–28.

Miroshnikova A.V., Sychev V.V., Tarabanko V.E., Kazachenko A.S., Skripnikov A.M., Eremina A.O., Kosivtsov Y., Taran O.P. International Journal of Molecular Sciences, 2023, vol. 24, no. 14, pp. 11337.

Ruiz-Matute A.I., Hernández-Hernández O., Rodríguez-Sánchez S., Sanz M. L., Martínez-Castro I. Journal of chromatography. B. Analytical technologies in the biomedical and life sciences, 2011, vol. 879, no. 17-18, pp. 1226–1240. DOI: 10.1016/j.jchromb.2010.11.013.

Huo L., Wang T., Xuan K., Li L., Pu Y., Li C., Qiao C., Yang H., Bai Y. Catalysts, 2021, vol. 11, no. 6, pp. 710. DOI: 10.3390/catal11060710.

Kwon N.H., Kim M., Jin X., Lim J., Kim I.Y., Lee N.-S., Kim H., Hwang S.-J. NPG Asia Materials, 2018, vol. 10, no. 7, pp. 659–669. DOI: 10.1038/s41427-018-0060-3.

Baudel H., Abreu C. d., Zaror C. Journal of Chemical Technology & Biotechnology, 2005, vol. 80, no. 2, pp. 230–233. DOI: 10.1002/jctb.1155.

Vilcocq L., Paez A., Freitas V. D., Veyre L., Fongarland P., Philippe R. RSC advances, 2021, vol. 11, no. 62, pp. 39387–39398. DOI: 10.1039/D1RA08193D.

Delgado-Arcaño Y., Mandelli D., Carvalho W.A., Pontes L.A.M. Waste and Biomass Valorization, 2021, vol. 12, no. 9, pp. 5109–5120. DOI: 10.1007/s12649-021-01348-7.

Published
2023-12-15
How to Cite
1. Golubkov V. A., Zaitseva Y. N., Kirik S. D., Eremina A. O., Sychev V. V., Taran O. P. XYLITOL PRODUCTION FROM XYLOSE OVER ZIRCONIA-DOPED SILICA SBA-15 SUPPORTED RUTHENIUM CATALYSTS // chemistry of plant raw material, 2023. № 4. P. 397-405. URL: http://journal.asu.ru/cw/article/view/14105.
Section
Low-molecular weight compounds