COMPARATIVE STUDIES OF PHYSIC-CHEMICAL PROPERTIES AND STRUCTURE OF COTTON CELLULOSE AND ITS MODIFIED FORMS

  • Abdumutalib Abdupattaevich Atahanov Institute of Polymer Chemistry and Physics Email: a-atakhanov@yandex.ru
  • Burkhon Mamadiyorov Institute of Polymer Chemistry and Physics Email: polymer@academy.uz
  • Makhliyo Kuzieva Institute of Polymer Chemistry and Physics Email: polymer@academy.uz
  • Svetlana Mikhaylovna Yugay Institute of Polymer Chemistry and Physics Email: polymer@academy.uz
  • Sirozh Shahobutdinov Institute of Polymer Chemistry and Physics Email: polymer@academy.uz
  • Nurbek Shodiyevich Ashurov Institute of Polymer Chemistry and Physics Email: polymer@academy.uz
  • Mukhitdin Abdurazakov Institute of Polymer Chemistry and Physics Email: polymer@academy.uz
Keywords: cotton cellulose, microcrystalline cellulose, nanocellulose, particle size, structure, properties, degree of crystallinity, reactivity

Abstract

Comparative studies of the physicochemical properties and structures of cotton cellulose, microcrystalline cellulose, and nanocellulose were carried out using IR, NMR spectroscopy, X-ray diffraction, thermal analysis in order to identify the dependence "particle size - structure - properties". It was revealed that in the series “cotton cellulose – microcrystalline cellulose – nanocellulose” the degree of polymerization decreases (1200, 230, 110 respectively), the degree of crystallinity increases (66%, 72%, 83% respectively). The IR spectra of microcrystalline cellulose and nanocellulose are characterized by sharp peaks (in the range 1000–1500 cm–1) compared with cotton cellulose. The amount of bound water in gels of microcrystalline cellulose and nanocellulose increases with decreasing particle size, the degree of stability of colloidal systems increases with the transition from microcrystalline cellulose to nanocellulose. Nanocellulose and microcrystalline cellulose have relatively smaller mass loss and relatively large temperature ranges of intensive decomposition and their thermal stability is higher than cotton cellulose. It was found that the periodate oxidation rate of nanocellulose is higher than that of microcrystalline cellulose and cotton cellulose. It was established that microcrystalline cellulose is quantitatively susceptible to periodate oxidation in 7–8 hours, and nanocellulose in 0.5–1 hour.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Abdumutalib Abdupattaevich Atahanov, Institute of Polymer Chemistry and Physics

доктор технических наук, заведующий лабораторией, старший научный сотрудник

Burkhon Mamadiyorov, Institute of Polymer Chemistry and Physics

младший научный сотрудник

Makhliyo Kuzieva, Institute of Polymer Chemistry and Physics

младший научный сотрудник

Svetlana Mikhaylovna Yugay, Institute of Polymer Chemistry and Physics

кандидат химических наук, старший научный сотрудник

Sirozh Shahobutdinov, Institute of Polymer Chemistry and Physics

младший научный сотрудник

Nurbek Shodiyevich Ashurov, Institute of Polymer Chemistry and Physics

кандидат физико-математических наук, старший научный сотрудник

Mukhitdin Abdurazakov, Institute of Polymer Chemistry and Physics

кандидат технических наук, старший научный сотрудник

References

Gal'braykh L.S. Sorosovskiy obrazovatel'nyy zhurnal, 1996, no. 11, pp. 47–53. (in Russ.).

Braun B., Dorgan J.R. Biomacromolecules, 2009, no. 10, pр. 334–341, DOI: 10.1021/bm8011117.

Hasani M., Cranston E.D., Westman G., Gray D.G. Soft Matter, 2008, no. 4, pр. 2238–2244, DOI: 10.1039/b806789a.

Morandi G., Heath L., Thielemans W. Langmuir, 2009, no. 25, pр. 8280–8286, DOI: 10.1021/la900452a.

Morais J.P.S., Rosa M.F., Filho M.M.S., Nascimento L.D., Nascimento D.M., Cassales A.R. Carbohydrate Polymers, 2013, no. 91, pp. 229–235, DOI: 10.1016/j.carbpol.2012.08.010.

Autlov S.A., Bazarnova N.G., Kushnir Ye.Yu. Khimiya rastitel'nogo syr'ya, 2013, no. 3, pp. 33–41, DOI: 10.14258/jcprm.1303033. (in Russ.).

Atakhanov A.A., Tikhonovetskaya A.D., Nabiyev D.S., Rashidova S.Sh. Khimiya rastitel'nogo syr'ya, 2004, no. 1, pp. 23–26. (in Russ.).

Atakhanov A.A., Tikhonovetskaya A.D., Nabiyev D.S., Sarymsakov A.A., Rashidova S.Sh. Farmatsevticheskiy zhur-nal, 2010, no. 4, pp. 66–72. (in Russ.).

Atakhanov A.A., Turdikulov I.Kh., Kuzieva M. Uzbek chemical journal, 2017, special issue, pp. 200–211.

GOST 9105-74. Tsellyuloza. Metod opredeleniya sredney stepeni polimerizatsii. [GOST 9105-74. Cellulose. Method for determining the average degree of polymerization]. Moscow, 1998, 6 p. (in Russ.).

Rogovin Z.A. Khimiya tsellyulozy. [Cellulose Chemistry]. Moscow, 1972, 520 p. (in Russ.).

Kargarzadeh H., Ahmad I., Abdullah I., Dufresne A., Zainudin S.Y., Sheltami R.M. Cellulose, 2012, no. 19, pр. 855–866, DOI: 10.1007/s10570-012-9684-6.

Atakhanov A.A., Yunusov M.Yu., Sarymsakov A.A., Rashidova S.Sh. Khimiya rastitel'nogo syr'ya, 2012, no. 3, pp. 45–48. (in Russ.).

Pittman R.A., Tripp V.W. Polym. Sci, 1970, no. 8, pр. 969–976.

Yanul' N.A., Kukushkina Yu.A., Sokolov V.V., Kravchik A.Ye., Kirsh Yu.E. Zhurnal prikladnoy khimii, 1999, vol. 72, no. 12, pp. 2037–2041. (in Russ.).

Frolova S.V., Kuvshinova L.A., Bugayeva A.Yu., Kuchin A.V. Khimiya rastitel'nogo syr'ya, 2011, no. 1. pp. 43–46. (in Russ.).

Karlivan V.P. Metody issledovaniya tsellyulozy. [Cellulose research methods]. Riga, 1981, 257 p. (in Russ.).

Basch A., Lewin M.J. J. Polymer Sci, 1973, vol. 11, no. 12, pp.3071–3093.

Sarymsakov A.A. Sredne- i nizkozameshchennaya karboksimetiltsellyuloza – polucheniye, svoystva i primeneniye. [Medium and low substituted carboxymethyl cellulose – production, properties and application]. Tashkent, 2005, 180 p. (in Russ.).

Nazhimutdinov Sh., Sarymsakov A.A., Usmanov Kh.U. Cellulose chemistry and Technology, 1975, vol. 7, no. 2, pр. 197–208.

Published
2019-03-12
How to Cite
1. Atahanov A. A., Mamadiyorov B., Kuzieva M., Yugay S. M., Shahobutdinov S., Ashurov N. S., Abdurazakov M. COMPARATIVE STUDIES OF PHYSIC-CHEMICAL PROPERTIES AND STRUCTURE OF COTTON CELLULOSE AND ITS MODIFIED FORMS // chemistry of plant raw material, 2019. № 3. P. 5-13. URL: http://journal.asu.ru/cw/article/view/4554.
Section
Biopolymers of plants