THE NEW METHOD OF OBTAINING MICROFIBRILLATED CELLULOSE FROM SPRUCE WOOD

UDC 547.458.8

  • Ol'ga Vladimirovna Yatsenkova Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ Email: yatsenkova@icct.ru
  • Andrey Mikhaylovich Skripnikov Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ Email: and-skripnikov@yandex.ru
  • Anton Aleksandrovich Karacharov Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ Email: karacharov@icct.ru
  • Elena Valentinovna Mazurova Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ Email: len.mazurova@yandex.ru
  • Sergey Aleksandrovich Vorob'yev Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ Email: yekspatz@yandex.ru
  • Boris Nikolayevich Kuznetsov Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ Email: bnk@icct.ru
Keywords: spruce wood, peroxide delignification, sulfuric acid catalyst, cellulose, acid hydrolysis, ultrasound treatment, microfibrillated cellulose

Abstract

The new method of producing of microfibrillated cellulose (MFC) from spruce wood was described. This method includes the stages of cellulose obtaining by peroxide delignification of wood in the medium “acetic acid-water-H2SO4 catalyst” and cellulose acid hydrolysis, ultrasonic treatment, and freeze drying. The structure of cellulosic products was studied by FTIR, XRD, SEM, AFM, dynamic light scattering methods. The particle size of final cellulosic products is characteristic of microfibrillated cellulose according to the TAPPI Standard WI 3021 classification. The particles of the MFC are characterized by a rather high surface charge, and its aqueous suspension showed a high colloidal stability for a long time. According to the AFM data the surface of the microfibrillated cellulose film is formed by homogeneous spherical particles with a diameter about 80 nm and does not contain external inclusions.

The new method of obtaining MFC from spruce wood is less energy-consuming and more environmentally friendly compared to traditional technologies due to single-stage production of high quality cellulose without the use of sulfur- and chlorine containing delignifying agents, increased pressure and high water consumption.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Ol'ga Vladimirovna Yatsenkova, Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ

кандидат химических наук, старший научный сотрудник

Andrey Mikhaylovich Skripnikov, Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ

младший научный сотрудник

Anton Aleksandrovich Karacharov, Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ

кандидат химических наук, научный сотрудник

Elena Valentinovna Mazurova, Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ

кандидат химических наук, научный сотрудник

Sergey Aleksandrovich Vorob'yev, Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ

кандидат химических наук, научный сотрудник

Boris Nikolayevich Kuznetsov, Institute of Chemistry and Chemical Technology SB RAS FRC ʺKrasnoyarsk Science Center SB RASʺ

доктор химических наук, профессор, заместитель директора, заведующий лабораторией

References

Moon R.J., Martini A., Nairn J., Simonsen J., Youngblood J. Chem Soc Rev., 2011, vol. 40, pр. 3941–3994. DOI: 10.1039/C0CS00108B.

Osong S.H., Norgren S., Engstrand P. Cellulose, 2016, vol. 23, pр. 93–123. DOI: 10.1007/s10570-015-0798-5.

Charreau H., Foresti M.L., Va´zquez A. Recent Pat Nanotechnol., 2013, vol. 7(1), pp. 56–80. DOI: 10.2174/1872210511307010056.

Zhou S., Liu P., Wang M., Zhao H., Yang J., Xu F. ACS Sustainable Chem. Eng., 2016, vol. 4 (12), pp. 6409–6416. DOI: 10.1021/acssuschemeng.6b01075.

Du H., Liu W., Zhang M., Si Ch., Zhang X., Li B. Carbohydrate Polymers, 2019, vol. 209, pp. 130–144. DOI: 10.1016/j.carbpol.2019.01.020.

Lepetit A., Drolet R., Tolnai B., Montplaisir D., Lucas R., Zerrouki R. Cellulose, 2017, vol. 24, no. 10, pp. 4303–4312. DOI: 10.1007/s10570-017-1429-0.

Lavoine N., Desloges I., Dufresne A., Bras J. Carbohydrate Polymers, 2012, vol. 90, pр. 735–764. DOI: 10.1016/j.carbpol.2012.05.026.

Spence K.L., Venditti R.A., Rojas O.J., Habibi Y., Pawlak J.J. Cellulose, 2011, vol. 18, pp. 1097–1111. DOI: 10.1007/s10570-011-9533-z.

Siqueira G., Tapin-Lingua S., Bras J., Da Silva Perez D., Dufresne A. Cellulose, 2010, vol. 18(1), pp. 57–65. DOI: 10.1021/bm700769p.

Saito T., Nishiyama Y., Putaux J.-L., Vignon M., Isoga A. Biomacromolecules, 2006, vol. 7 (6), pp. 1687–1691. DOI: 10.1021/bm060154s.

Qing Y., Sabo R., Zhu J.Y., Agarwal U., Cai Z., Wu Y. Carbohydrate Polymers, 2013, vol. 97(1), pp. 226–234. DOI: 10.1016/j.carbpol.2013.04.086.

Kuznetsov B.N., Kuznetsova S.A., Danilov V.G., Yatsenkova O.V., Petrov A.V. Reaction Kinetics Mechanisms and Catysis, 2011, vol. 104, pp. 337–343. DOI: 10.1007/s11144-011-0354-8.

Kuznetsov B.N., Kuznetsova S.A., Levdansky V.A., Levdansky A.V., Vasil’eva N.Yu., Chesnokov N.V., Ivanchen-ko N.M., Djakovitch L., Pinel C. Wood Science and Technology, 2015, vol. 49, no. 4, pp. 825–843. DOI: 10.1007/500226-015-0723-y.

Wadenbäck J., Clapham D.H, Gellerstedt G., Arnold S. Holzforschung, 2004, vol. 58(2), pp. 107–115. DOI: 10.1515/HF.2004.015.

Sjöström E., Alen R. Analytical methods of wood chemistry. Pulping and papermaking. Berlin: Springer-Verlag, 1999, 318 p.

Nascimento S.A., Rezende C.A. Carbohydrate Polymers, 2018, vol. 180, pp. 38–45. DOI: 10.1016/j.carbpol.2017.09.099.

Carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography (Reaffirmation of T 249 сm-09). Tappi, 2009.

Ruiz-Matute A.I., Hernandez-Hernandez O., Rodriguez-Sanchez S., Sanz M.L., Martinez Castro I. J. Chromatogr. B., 2011, vol. 879, pp. 1226–1240. DOI: 10.1016/j.jchromb.2010.11.013.

Park S., Baker J.O., Himmel M.E., Parilla P.A., Jonson D.K. Biotechnology and Biofuels, 2010, vol. 3, p. 10. DOI: 10.1186/1754-6834-3-10.

Elazzouzi-Hafraou S., Nishiyama Y., Putaux J.-L., Heux L., Dubreuil F., Rochas C. Biomacromolecules, 2008, vol. 9(1), pp. 57–65. DOI: 10.1021/bm700769p.

Hallac B.B., Ragauskas A.J. Biofuels Bioprod Bioref., 2011, vol. 5, pp. 215–225. DOI: 10.1002/bbb.269.

GOST 2789-73 (Rekomendatsiya ISO R 286). Sherokhovatost' poverkhnosti. Parametry i kharakteristiki. [GOST 2789-73 (Recommendation ISO R 286). Surface roughness. Parameters and characteristics]. Moscow, 2006, 7 p. (in Russ.).

Xu F., Yu J., Tesso T., Dowell F., Wang D. Applied Energy, 2013, vol. 104, pp. 801–809. DOI: 10.1016/j.apenergy.2012.12.019.

Ghaffar S.H., Fan M. Biomass and Bioenergy, 2013, vol. 57, pp. 264–279. DOI: 10.1016/j.biombioe.2013.07.015.

Carrillo I., Mendonça R.T., Ago M., Rojas O.J. Cellulose, 2018, vol. 25, pp. 1011–1029. DOI: 10.1007/s10570-018-1653-2.

Carrillo F., Colom X., Sunol J.J., Saurina J. European Polymer Journal, 2004, vol. 40, pp. 2229–2234. DOI: 10.1016/j.eurpolymj.2004.05.003.

Ishankhodzhayeva M.M., Golen'kov S.V., Derkacheva O.Yu. Khimiya rastitel'nogo syr'ya, 2014, no. 3, pp. 105–110. (in Russ.).

Åkerholm M., Hinterstoisser B., Salmén L. Carbohydr. Res., 2004, vol. 339, pp. 569–578. DOI: 10.1016/j.carres.2003.11.012.

Ioyelovich M.Ya. Khimiya rastitel'nogo syr'ya, 2016, no. 3, pp. 5–10. DOI: 10.14258/jcprm.2016031210 (in Russ.).

Ago M., Endo T., Hirotsu T. Cellulose, 2004, vol. 11, pp. 163–167. DOI: 10.1023/B:CELL.0000025423.32330.fa

Phanthong P., Karnjanakom S., Reubroycharoen P., Hao X., Abudula A., Guan G. Cellulose, 2017, vol. 24, pp. 2083–2093. DOI: 10.1007/s10570-017-1238-5.

Aulin C., Ahola S., Josefsson P., Nishino T., Hirose Y., Osterberg M. et al. Langmuir, 2009, vol. 25(13), pp. 7675–7685. DOI: 10.1021/la900323n.

Li X., Li J., Gong J., Kuang Y., Mo L., Song T. Carbohydrate Polymers, 2018, vol. 183, pp. 303–310. DOI: 10.1016/j.carbpol.2017.12.085.

Xiao Sh., Gao R., Lu Y., Li J., Sun Q. Carbohydrate Polymers, 2015, vol. 119, pр. 202–209. DOI: 10.1016/j.carbpol.2014.11.041.

Hishikawa Y., Togawa E., Kondo T. ACS Omega, 2017, vol. 2, pp. 1469−1476. DOI: 10.1021/acsomega.6b00364

Nuruddin M., Hosur M., Uddin M.J., Baah D., Jeelani S. J. Appl. Polym. Sci., 2016, vol. 133(9), p. 42990. DOI: 10.1002/app.42990.

Shankar Sh., Rhim J.-W. Carbohydrate Polymers, 2016, vol. 135, pp. 18–26. DOI: 10.1016/j.carbpol.2015.08.082.

Gong J., Li J., Xu J., Xiang Z., Mo L. RSC Adv., 2017, vol. 7, pp. 33486–33493. DOI: 10.1039/C7RA06222B.

Pang J.H., Wu M., Zhang Q.H., Tan X., Xu F., Zhang X.M., Sun R.C. Carbohydrate Polymers, 2015, vol. 121, pр. 71–78. DOI: 10.1016/j.carbpol.2014.11.067.

Niu F., Li M., Huang Q., Zhang X., Pan W., Yang J., Li J. Carbohydrate Polymers, 2017, vol. 165, pp. 197–204. DOI: 10.1016/j.carbpol.2017.02.048.

Published
2020-03-05
How to Cite
1. Yatsenkova O. V., Skripnikov A. M., Karacharov A. A., Mazurova E. V., Vorob’yev S. A., Kuznetsov B. N. THE NEW METHOD OF OBTAINING MICROFIBRILLATED CELLULOSE FROM SPRUCE WOOD // chemistry of plant raw material, 2020. № 1. P. 303-314. URL: http://journal.asu.ru/cw/article/view/6105.
Section
Technology