SYNTHESIS AND ANTIRADICAL ACTIVITY OF HINDERED PHENOLIC DERIVATIVES OF FLAX CELLULOSE

UDC 661.728.89

  • Sergey Vladimirovich Bukharov Kazan National Research Technological University Email: svbukharov@mail.ru
  • Yuliya Maskhutovna Sadykova Institute of Organic and Physical Chemistry named after A.E. Arbuzova FIC KSC RAS Email: jsadykova@mail.ru
  • Timur Erkinovich Umarov Kazan National Research Technological University Email: Sothasil1042@gmail.com
  • Aleksandr Romanovich Burilov Institute of Organic and Physical Chemistry named after A.E. Arbuzova FIC KSC RAS Email: burilov_2004@mail.ru
  • Gul'nara Nailovna Nugumanova Kazan National Research Technological University Email: guliang1@rambler.ru
  • Kseniya Sergeyevna Momzyakova Kazan National Research Technological University Email: ksunya-fadeeva@yandex.ru
  • Timur Rustamovich Deberdeev Kazan National Research Technological University Email: deberdeev@mail.ru
  • Rustam Yakubovich Deberdeev Kazan National Research Technological University Email: rudeberdeev@mail.ru
Keywords: cellulose, modification, hindered phenols, antiradical activity, 2,2-diphenyl-1-picrylhydrazyl

Abstract

The modification of powdered ultradisperse cellulose by hindered phenol fragments was carried out. The modification was carried out by reacting cellulose tosylate with 3-(3',5'-ditert-butyl-4'-hydroxyphenyl) propionic acid hydrazide and 3,5-ditert-butyl-4-hydroxybenzyl dimethylamine in DMF at 100 C for 16–30 hours. Samples of modified cellulose were characterized by spectroscopy IR and 1H NMR. From the of elemental analysis data, the degree of substitution of cellulose derivatives by hindered phenol units was calculated. The antiradical activity of the obtained samples in their reactions with a stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) was determined. The reactions of modified cellulose with DPPH were carried out under the pseudo first-order conditions with respect to the radical. From the values of the effective constants, the second-order rate constants were calculated. It was established that the modification of cellulose by hindered phenol fragments leads to a sharp increase in its antiradical activity, which depends on the degree of substitution of the sample and the method of substitution. The difference in the activity of hydrazide and benzyl derivatives of cellulose may indicate their different spatial structure, resulting in different availability of phenol fragments. The antiradical activity of the hydrazide derivative of cellulose exceeds that of the antioxidant Ionol (2,6-ditert-butyl-4-methylphenol).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Sergey Vladimirovich Bukharov, Kazan National Research Technological University

доктор химических наук, профессор, заведующий кафедрой технологии основного органического и нефтехимического синтеза

Yuliya Maskhutovna Sadykova, Institute of Organic and Physical Chemistry named after A.E. Arbuzova FIC KSC RAS

кандидат химических наук, старший научный сотрудник лаборатории элементоорганического синтеза

Timur Erkinovich Umarov, Kazan National Research Technological University

студент

Aleksandr Romanovich Burilov, Institute of Organic and Physical Chemistry named after A.E. Arbuzova FIC KSC RAS

доктор химических наук, профессор, заведующий лабораторией элементоорганического синтеза

Gul'nara Nailovna Nugumanova, Kazan National Research Technological University

кандидат химических наук, доцент кафедры технологии синтетического каучука

Kseniya Sergeyevna Momzyakova, Kazan National Research Technological University

инженер-исследователь

Timur Rustamovich Deberdeev, Kazan National Research Technological University

доктор технических наук, доцент, заведующий кафедрой технологии переработки полимеров и композиционных материалов

Rustam Yakubovich Deberdeev, Kazan National Research Technological University

доктор технических наук, профессор, профессор кафедры технологии переработки полимеров и композиционных материалов

References

Men'shchikova Ye.B., Lankin V.Z., Zenkov N.K., Bondar' I.A., Krugovykh N.F., Trufakin V.A.. Okislitel'nyy stress. Prooksidanty i antioksidanty. [Oxidative stress. Prooxidants and antioxidants]. Moscow, 2006, 554 p. (in Russ.).

Aref'yev D.V., Belostotskaya I.S., Vol'yeva V.B., Domnina N.S., Komissarova N.L., Sergeyeva O.Yu., Khrustaleva R.S. Izvestiya Akademii Nauk, seriya khimiya, 2007, no. 4, pp. 751–761. DOI: 10.1007/s11172-007-0117-x. (in Russ.).

Torlopov M.A., Chukicheva I.Yu., Kuchin A.V. Khimiya prirodnykh soyedineniy, 2011, vol. 47, no. 6, pp. 761–763. (in Russ.).

Patent 2497828 (RU). 2013. (in Russ.).

Patent 2619934 (RU). 2017. (in Russ.).

Autlov S.A., Bazarnova N.G., Kushnir Ye.Yu. Khimiya Rastitel'nogo Syr'ya, 2013, no. 3, pp. 33–41. DOI: 10.14258/jcprm.1303033. (in Russ.).

Savel'yeva Ye.Ye., Dosadina E.E., Belov A.A. Uspekhi v khimii i khimicheskoy tekhnologii, 2016, vol. 30, no. 9, pp. 16–18. (in Russ.).

Savel'yeva Ye.Ye., Dosadina E.E., Belov A.A. Uspekhi v khimii i khimicheskoy tekhnologii, 2017, vol. 31, no. 9, pp. 14–16. (in Russ.).

Patent 2554629 (RU). 2015. (in Russ.).

Qu J., Khan F. Z., Satoh M., Wada J., Hayashi H., Mizoguchi K., Masuda T. Polymer, 2008, vol. 49, pp. 1490–1496. DOI: 10.1016/j.polymer.2008.01.065.

Yang T., Xiao P., Zhang J.M, Jia R., Nawaz H., Chen Zh., Zhang J. ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 4, pp. 4302–4310. DOI: 10.1021/acsami.8b15642.

Burlakova Ye.B. Rossiyskiy khimicheskiy zhurnal, 2007, vol. LI, no. 1, pp. 3–12. (in Russ.).

Patent 2343240 (RU). 2009. (in Russ.).

Kramer J.B., Boschelli D.H., Connor D.T. J. Heterocyclic. Chem., 1994, vol. 31, pp. 1439–1443. DOI: 10.1002/jhet.5570310625.

Rahn K., Diamantoglou M., Klemm D., Berghmans H., Heinze T. Angewandte Makromolekulare Chemie, 1996, vol. 238, no. 1, pp. 143–163. DOI: 10.1002/apmc.1996.052380113.

Tkacheva N.I., Morozov S.V., Grigor'yev I.A., Mognonov D.M., Kolchanov N.A. Vysokomolekulyarnyye soyedineni-ya, seriya B, 2013, vol. 55, no. 8, pp. 1086–1107. DOI: 10.7868/S0507547513070179. (in Russ.).

Shipina O.T., Garayeva M.R., Aleksandrov A.A. Vestnik KTU, 2009, no. 6, pp. 148–152. (in Russ.).

Arzamanova I.G., Logvinenko P.M., Gurevich Ya.A. Zhurnal fizicheskoy khimii, 1973, vol. 47, no. 3, pp. 707–708. (in Russ.).

Arzamanova I.G., Nayman M.I., Gurevich Ya.A. Zhurnal fizicheskoy khimii, 1979, vol. 53, no. 4, pp. 1007–1009. (in Russ.).

Published
2020-06-10
How to Cite
1. Bukharov S. V., Sadykova Y. M., Umarov T. E., Burilov A. R., Nugumanova G. N., Momzyakova K. S., Deberdeev T. R., Deberdeev R. Y. SYNTHESIS AND ANTIRADICAL ACTIVITY OF HINDERED PHENOLIC DERIVATIVES OF FLAX CELLULOSE // chemistry of plant raw material, 2020. № 2. P. 47-54. URL: http://journal.asu.ru/cw/article/view/6278.
Section
Biopolymers of plants