SYNTHESIS AND STUDY OF THE PROPERTIES OF XEROGELS DERIVED FROM SULFATED PINE ETHANOL LIGNIN

UDC 547.992.3

  • Nadezhda Mikhaylovna Mikova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center SB RAS Email: nm@icct.ru
  • Vladimir Aleksandrovich Levdansky Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center SB RAS Email: inm@icct.ru
  • Yelena Valentinovna Mazurova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center SB RAS Email: nm@icct.ru
  • Boris Nikolayevich Kuznecov Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center SB RAS Email: inm@icct.ru
Keywords: pine, sulfated ethanol lignin, tannins, formaldehyde, furfuryl alcohol, organic xerogel, microstructure, porosity

Abstract

Organic xerogels based on lignin and tannins isolated from pine bark and wood were first obtained by condensation with formaldehyde and furfuryl alcohol in the presence of hydrochloric acid. The use of pine sulfated ethanol lignin made it possible for the first time to obtain sulfur-containing (up to 1.3% wt.) lignin-(tannin)-formaldehyde and lignin-(tannin)-furfuryl xerogels. The density of the obtained gels increases with the addition of tannins to lignin and varies in the range 0.13–0.39 g/cm3. Xerogels synthesized by condensation with furfuryl alcohol are stronger than those obtained using formaldehyde. The presence of sulfur in xerogels was confirmed by elemental and chemical analysis and IR spectroscopy. It was shown by scanning electron microscopy, that lignin-formaldehyde xerogels are formed from large polymer chains, consisting of interconnected aggregates of micron-sized particles and have large pores. The addition of tannins to the polycondensation system is accompanied by the formation of a more compact spatially crosslinked gel structure. BET method showed that all xerogels have low porosity, and lignin-furfuryl samples have a larger average pore diameter (7.2–14.5 nm) compared to lignin-formaldehyde samples (3.03–6.80 nm).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nadezhda Mikhaylovna Mikova, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center SB RAS

кандидат химических наук, старший научный сотрудник

Vladimir Aleksandrovich Levdansky, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center SB RAS

доктор химических наук, главный научный сотрудник

Yelena Valentinovna Mazurova, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center SB RAS

кандидат технических наук, старший научный сотрудник

Boris Nikolayevich Kuznecov, Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center Krasnoyarsk Scientific Center SB RAS

доктор химических наук, профессор, заместитель директора по научной работе, заведующий лабораторией

References

Rey-Raap N., Szczurek A., Fierro V., Menéndez J.A., Arenillas A., Celzard A. J. Colloid Interface Sci., 2015, vol. 456, pp. 138–144. DOI: 10.1016/j.jcis.2015.06.024.

Pierre A.C., Pajonk G.M. Chemical Reviews, 2002, vol. 102, pp. 4243–4265. DOI: 10.1021/cr0101306.

Kraiwattanawong K., Tamon H., Praserthdam P. Micropor Mesopor Mater., 2011, vol. 138 (1–3), pp. 8–16. DOI: 10.1016/j.micromeso.2010.10.001.

Job N., The´ry A., Pirard R., Marien J., Kocon L., Rouzaud J.-N., Be´guin F. Carbon, 2005, vol. 43 (12), pp. 2481–2494. DOI: 10.1016/j.carbon.2005.04.031.

Chen Ch., Kennel E.B., Stiller A.H., Stansberry P.G., Zondlo J.W. Carbon, 2006, vol. 44, pp. 1535–1543. DOI: 10.1016/j.carbon.2005.12.021.

Amaral-Labat G., Szczurek A., Fierro V., Pizzi A., Celzard A. Science and Technology of Advanced Materials, 2013, vol. 14(1), 015001. DOI: 10.1088/1468-6996/14/1/015001.

Stewart D. Indust. Crops and Products, 2008, vol. 27, pp. 202–207. DOI: 10.1016/j.indcrop.2007.07.008.

Karaaslan M.A., Kadla J.F., Ko F.K. Lignin in Polymer Composites, 2016, pp. 67–93. DOI: 10.1016/B978-0-323-35565-0.00005-9.

Chen F., Li J. Advanced Materials Research, 2010, vol. 113–116, pp. 1837–1840. DOI: 10.4028/www.scientific.net/AMR.113-116.1837.

Tamon H., Ishizaka H., Mikami M., Okazaki M. Carbon, 1997, vol. 35(6), pp. 791–796. DOI: 10.1016/S0008-6223(97)00024-9.

Chen F., Xu M., Wang L., Li J. Bioresources, 2011, vol. 6, pp. 1261–1272.

Grishechko L.I., Amaral-Labat G., Szczurek A., Fierro V., Kuznetsov B.N., Celzard A. Micropor Mesopor Mater., 2013, vol. 168, pp. 19–29. DOI: 10.1016/j.micromeso.2012.09.024.

Grishechko L.I., Amaral-Labat G., Szczurek A., Fierro V., Kuznetsov B.N., Pizzi A., Celzard A. Indust. Crops and Products, 2013, vol. 41, pp. 347–355. DOI: 10.1016/j.indcrop.2012.04.052.

Mikova N.M., Levdanskiy V.А., Skwortsova G.P., Zhizhaev А.М., Lutoshkin M.A., Chesnokov N.V., Kuz-netsov B.N. Biomass Conversion and Biorefinery, 2020. DOI: 10.1007/s13399-019-00561-8.

Nishida M., Uraki Y. Bioresour. Technol., 2003, vol. 88, pp. 81–83. DOI: 10.1016/S0960-8524(02)00264-X.

Passauer L. Holzforschung. ACS Symposium Series, 2012, vol. 1107, pp. 211–228. DOI: 10.1021/bk-2012-1107.ch011.

Perez-Cantu L., Liebner F., Smirnova I. Micropor Mesopor Mater., 2014, vol. 195, pp. 303–310. DOI: 10.1016/j.micromeso.2014.04.018.

Thakur V.K., Thakur M.K. International Journal of Biological Macromolecules, 2015, vol. 72, pp. 834–847. DOI: 10.1016/j.ijbiomac.2014.09.044.

Seo J., Park H., Shin K., Baeck S.H., Rhym Y., Shim S.E. Carbon, 2014, vol. 76, pp. 357–367. DOI: 10.1016/j.carbon.2014.04.087.

Malutan T., Nici R., Popa V.I. BioResources, 2008, vol. 3(1), pp. 13–20. DOI: 10.15376/biores.3.1.13-20.

Kuznetsov B.N., Vasilyeva N.Yu., Kazachenko A.S., Levdansky V.A., Kondrasenko A.A., Malyar Yu.N., Skvort-sova G.P., Lutoshkin M.A. Wood science and technology, 2020, vol. 54, pp. 365–381. DOI: 10.1007/s00226-020-01157-6.

Lee Y.J., Jung J.C., Park S., Seo J.G., Baeck S.H., Yoon J.R., Yi J. et al. Current Applied Physics., 2010, vol. 10 (3), pp. 947–951. DOI: 10.1016/j.cap.2009.11.078.

Machado B.F., Gomes H.T., Serp P., Kalck P., Figueiredo J.L., Faria J.L. Catalysis Today, 2010, vol. 149, pp. 358–364. DOI: 10.1016/j.cattod.2009.06.016.

Feinle A., Hüsing N. J. Supercritical Fluids, 2015, vol. 106, pp. 2–6. DOI: 10.1016/j.supflu.2015.07.015.

Rey-Raap N., Szczurek A., Fierro V., Celzard A., Menéndez J.A., Arenillas A. Indust. Crops and Products, 2016, vol. 82, pp. 100–106. DOI: 10.1016/j.indcrop.2015.12.001.

Kicin´ski W., Szala M., Bystrzejewsk M. Carbon, 2014, vol. 68, pp. 1–32. DOI: 10.1016/j.carbon.2013.11.004.

Kuznetsov B.N, Vasilyeva N.Yu., Kazachenko A.S., Skvortsova G.P., Levdansky V.A., Lutoshkin M.A. J. Sib. Fed. Univ. Chem., 2018, vol. II(I), pp. 122–130. DOI: 10.17516/1998-2836-0170. (in Russ.).

Cheronis N.D., Ma T.S. Mikro- i polumikrometody organicheskogo funktsional'nogo analiza. [Micro- and semi-micromethods of organic functional analysis]. Moscow, 1973, 576 p. (in Russ.).

Gregg S., Sing K. Adsorbtsiya. Udel'naya poverkhnost'. Poristost'. [Adsorption. Specific surface area. Porosity]. Mos-cow, 1984, 306 p. (in Russ.).

Lignin and lignans: advances in chemistry, eds. C. Heitner, D. Dimmel, J. Schmidt. CRC. Press: Taylor and Francis Group, 2010, 683 p. DOI: 10.1201/EBK1574444865.

Lochab B., Shukla S., Varma I.K. RSC Adv., 2014, vol. 4, pp. 21712–21752. DOI: 10.1039/C4RA00181H.

Rey-Raap N., Calvo E.G., Menendez J.A., Arenillas A. Micropor Mesopor Mater., 2017, vol. 244, pp. 50–54. DOI: 10.1016/j/micromeso.2017.02.044.

Published
2021-03-16
How to Cite
1. Mikova N. M., Levdansky V. A., Mazurova Y. V., Kuznecov B. N. SYNTHESIS AND STUDY OF THE PROPERTIES OF XEROGELS DERIVED FROM SULFATED PINE ETHANOL LIGNIN // chemistry of plant raw material, 2021. № 1. P. 45-54. URL: http://journal.asu.ru/cw/article/view/8242.
Section
Biopolymers of plants