FUNCTIONAL MATERIALS FROM PAPER WASTES. II. CELLULOSE HYDROGELS WITH HIGH WATER RETEN-TION CAPACITY OBTAINED FROM SOLUTIONS OF WASTE PAPER IN DMAC/LiCl

UDC 677.014.82

Keywords: hydrogel, waste, cellulose, X-ray difraction analysis, morphology

Abstract

An efficient process for recycling paper and cardboard wastes via dissolution in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) system and regeneration from solutions to obtain hydrogels has been developed. Pretreatment of waste paper has been carried out by thermal defibrillation of waste paper in water and homogenization to obtain fibre samples. The dissolution of fibre materials has been performed in two ways varying the process temperature and the way the reagents have been introduced. Regeneration from solutions has been carried out by spontaneous gelation without the use of antisolvents, at room temperature and atmospheric pressure. As a result, hydrogels were obtained which differed in color and transparency depending on feedstock. The physico-chemical properties of the hydrogels have been characterized. It has been shown that they were stable in an aqueous medium, capable of retaining a significant amount of water (over 4000 wt.%), and were porous systems which has been confirmed by scanning electron microscopy. According to a wide-angle X-ray scattering, the crystallographic structure of the pristine waste paper samples corresponded to a structural modification of cellulose I. Regenerated samples as freeze-dried hydrogels had the structure of cellulose II. A functional and an elemental composition studied with FTIR spectroscopy and an energy-dispersive X-ray microanalysis characterized these hydrogels as the cellulose samples containing small amount of inorganic impurities. The resulting hydrogels had a system of through pores of different sizes, and this predetermined their use as adsorbents and active matrices.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Aleksandra Mikhaylovna Mikhailidi, Saint Petersburg State University of Industrial Technologies and Design

кандидат химических наук, доцент кафедры технологии полиграфического производства, доцент кафедры теоретической и прикладной химии

Nina Yefimovna Kotelnikova, Institute of Macromolecular Compounds, Russian Academy of Sciences

доктор химических наук, ведущий научный сотрудник

References

Volkova A.V. Rynok utilizatsii otkhodov. Doklad NIU VShE. [Waste disposal market. HSE report]. Moscow, 2018, 87 p. (in Russ.).

Ünlü C.H. Carbohydr. Polym., 2013, vol. 97, no. 1, p. 159. DOI: 10.1016/j.carbpol.2013.04.039.

Hospodarova V., Stevulova N., Briancin J., Kostelanska K. Buildings, 2018, vol. 8, no. 43, p. 1. DOI: 10.3390/buildings8030043.

Pang S.C., Chin S.F., Yih V. Adv. Mat. Lett., 2011, vol. 2, no. 2, p. 118. DOI: 10.5185/amlett.2011.1203.

Campano C., Miranda R., Merayo N., Negro C., Blanco A. Carbohydr. Polym., 2017, vol. 173, p. 489. DOI: 10.1016/j.carbpol.2017.05.073.

Tang Y., Shen X., Zhang J., Guo D., Kong F., Zhang N. Carbohyd. Polym., 2015, vol. 125, p. 360. DOI: 10.1016/j.carbpol.2015.02.063.

Danial W.H., Majid Z.A., Muhid M.N.M., Triwahyono S., Bakar M.B., Ramli Z. Carbohydr. Polym., 2015, vol. 118, p. 165. DOI: 10.1016/j.carbpol.2014.10.072.

Nguyen S.T., Feng J., Kai Ng Sh., Wong J.P.W., Tan V.B.C., Duong H.M. Colloids and Surfaces, Ser. A., 2014, vol. 445, p. 128. DOI: 10.1016/j.colsurfa.2014.01.015.

Duong H.M., Le D.Kh., Thai Q.B., Luu Th.Ph., Do N.H. Thermal behaviour and applications of carbon-based na-nomaterials. Amsterdam: Elsevier, 2020, pp. 221–269. DOI: 10.1016/b978-0-12-817682-5.00009-x.

Cellulose aerogels from recycled waste: Reports. Climate technology centre & network, no. ational University of Sin-gapore, 2015.

Jin C., Han S., Li J., Sun Q. Carbohydr. Polym., 2015, vol. 123, no. 5, p. 150. DOI: 10.1016/j.carbpol.2015.01.056.

Fan P., Yuan Y., Ren J., Yuan B., He Q. et al. Carbohydr. Polym., 2017, vol. 162, p. 108. DOI: 10.1016/j.carbpol.2017.01.015.

Feng J.D., Nguyen S.T., Duong H.M. Adv. Mater. Res., 2014, vol. 936, p. 938. DOI: 10.4028/www.scientific.net/amr.936.938.

Zhang Sh., Zhang F., Jin L., Liu B., Mao Y., Ya L.J. Cellulose, 2019, vol. 26, p. 5177. DOI: 10.1007/s10570-019-02434-9.

Fridrihsone V., Zoldners J., Skute M., Grinfelds U., Filipova I. et al. Key Eng. Mater., 2019, vol. 800, p. 138. DOI: 10.4028/www.scientific.net/kem.800.138.

Kotelnikova N.E., Bykhovtsova Yu.V., Mikhailidi A.M., Saprykina N.N. Russian Journal of Bioorganic Chemistry, 2015, vol. 41, no. 7, p. 700. DOI: 10.1134/s1068162015070067.

Kotelnikova N.E., Mikhailidi A.M., Martakova Yu.V. Polymer Science, Ser. A, 2017, vol. 59, no. 1, p. 76. DOI: 10.1134/s0965545x17010084.

Patent 101649574B (CN). 2010.

Martakova Yu.V. Gidrogeli na osnove rastitel'nykh tsellyuloz i ikh kompozity s nanochastitsami serebra: Dis. … kand. khim. nauk. [Hydrogels based on plant celluloses and their composites with silver nanoparticles: Dis. ... Cand. chem. sciences]. Syktyvkar, 2018, 153 p. (in Russ.).

Karim Saurov Sh., Mikhailidi A., Svedstrom K., Kotelnikova N. Cellulose Chem. Technol., 2019, vol. 53, no. 9‒10, p. 885. DOI: 10.35812/cellulosechemtechnol.2019.53.86.

Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. Berlin, 1918, pp. 98–100.

Varepo L.G. Fundamental'nyye issledovaniya, 2007, no. 12-2, p. 279. (in Russ.).

Mikhailidi A., Karim Saurov Sh., Andersson S., Kotelnikova N. TAPPI J., 2018, vol. 17, no. 2, p. 81. DOI: 10.32964/tj17.02.81.

Segal L., Creely J.J., Martin Jr. A.E., Conrad C.M. Text. Res. J., 1959, vol. 29, no. 10, p. 786. DOI: 10.1177/004051755902901003.

Mansikkamäki P., Lahtinen M., Rissanen K. Cellulose, 2005, vol. 12, p. 233. DOI: 10.1007/s10570-004-3132-1.

Awadel-Karim S., Nazhad M.M., Paszner L. Holzforschung, 1999, vol. 53, no. 1, p. 1. DOI: 10.1515/hf.1999.001.

del Cerro D.R., Koso T.V., Kakko T., King A.W.T., Kilpeläinen I. Cellulose, 2020, vol. 27, p. 5545. DOI: 10.1007/s10570-020-03044-6.

Wittmar A.S.M., Koch D., Prymak O., Ulbricht M. ACS Omega, 2020, vol. 5, no. 42, p. 27314. DOI: 10.1021/acsomega.0c03632.

Beushev A.A., Skurydin Yu.G., Skurydina Ye.M., Beusheva O.S., Kon'shin V.V. Polzunovskiy vestnik, 2016, no. 2, p. 192. (in Russ.).

Konturri E. Lecture 2. CHEM-E2140 - Cellulose-Based Fibres. Aalto University. Finland, 2015.

Yan Ch.-F., Yu H.-Y., Yao J.-M. Cellulose, 2015, vol. 22, p. 3773. DOI: 10.1007/s10570-015-0761-5.

Ling Zh., Chen Sh., Zhang X., Takabe K., Xu F. Sci. Rep., 2017, vol. 7, 10230. DOI: 10.1038/s41598-017-09885-9.

Garside P., Wyeth P. Studies in Conservation, 2003, vol. 48, no. 4, p. 269. DOI: 10.1179/sic.2003.48.4.269.

Neto W.P.F., Putaux J.-L., Mariano M., Ogawa Y., Otaguro H., Pasquini D., Dufresne A. RSC Advances, 2016, vol. 6, no. 79, p. 76017. DOI: 10.1039/c6ra16295a.

Han J., Zhou Ch., French A.D., Han G., Wu Q. Carbohydr. Polym., 2013, vol. 94, p. 773. DOI: 10.1016/j.carbpol.2013.02.003.

Published
2021-09-27
How to Cite
1. Mikhailidi A. M., Kotelnikova N. Y. FUNCTIONAL MATERIALS FROM PAPER WASTES. II. CELLULOSE HYDROGELS WITH HIGH WATER RETEN-TION CAPACITY OBTAINED FROM SOLUTIONS OF WASTE PAPER IN DMAC/LiCl // chemistry of plant raw material, 2021. № 3. P. 83-98. URL: http://journal.asu.ru/cw/article/view/9269.
Section
Biopolymers of plants