Abstract
Uranium contamination presents significant challenges to biological systems due to its chemical toxicity and radiological impacts. Rhizofiltration emerges as a cost-effective strategy for environmental remediation of uranium. This study aimed to compare the uranium uptake capabilities of two plant species, Helianthus annuus L. (sunflower) and Amaranthus caudatus L. (purple amaranth), in a hydroponic system. The plants were cultivated in nutrient solutions supplemented with 0.5 mM or 1 mM UO₂(NO₃)₂.6H₂O without phosphate. After 14 days of growth, we assessed uranium uptake. Our findings revealed that H. annuus effectively removed over 95% of the initial uranium concentration from the solution, while A. caudatus exhibited a removal efficiency of approximately 65–80%. In both species, uranium accumulation and transport to the upper, harvestable parts were limited. The highest uranium concentration was observed in the roots of H. annuus (37,050.8 ± 3,547 mg kg-1 DW), whereas A. caudatus roots had a noticeably lower concentration (14,944.68 ± 3,278 mg kg-1 DW). Interestingly, A. caudatus demonstrated greater uranium accumulation in its shoots compared to H. annuus. Overall, while H. annuus demonstrates superior potential for uranium rhizofiltration, A. caudatus emerges as a promising candidate as a hyperaccumulator for uranium.
References
ASTM (American Society for Testing Materials) (2011) Annual Book of ASTM Standards, Water and Environmental Technology, 11.01. ASTM International, West Conshohocken, PA.
Ayotte JD, Gronberg JM, Apodaca LE (2011) Trace elements and radon in groundwater across the United States, 1992–2003: U.S. Geological Survey Scientific Investigations Report 2011–5059, 115 p.
Caldwell EF, Duff MC, Ferguson CE, Coughlin DP, Hicks RA, Dixon E (2012) Biomonitoring for uranium using stream-side terrestrial plants and macrophytes. Journal of environmental monitoring 14(3): 968–976. https://doi.org/10.1039/c2em10738d
Campbell KM, Gallegos TJ, Landa ER (2015) Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Applied Geochemistry 57: 206–235. https://doi.org/10.1016/j.apgeochem.2014.07.022
Crawford SE, Liber K (2015) Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutes. Science of the Total Environment 532: 821–830. https://doi.org/10.1016/j.scitotenv.2015.05.116
Du L, Feng X, Huang Z, Liu B, Jin Y, Fang Z, Zhang D, Liu N, Wang R, Xia C (2016) The effect of U speciation in cultivation solution on the uptake of U by variant Sedum alfredii. Environmental Science and Pollution Research 23(10): 9964–9971. https://doi.org/10.1007/s11356-016-6226-z
Dushenkov D (2003) Trends in phytoremediation of radionuclides. Plant and Soil 249: 167– 175. https://doi.org/10.1023/A:1022527207359
Dushenkov V, Vasudev D, Kapulnik Y, Ensley B (1997) Removal of uranium from water using terrestrial plants. Environmental Science & Technology 31 (12): 3468–3474. https://doi.org/10.1021/es970220l
Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environmental research 91(2): 127–133. https://doi.org/10.1016/s0013-9351(02)00018-x
ERNST WHO (2000) Evolution and ecophysiology of metallophytes in Africa and Europe. In: Breckle SW, Schweizer B, Arndt U (Eds) Results of worldwide ecological studies. Heimbach, Stuttgart, pp. 23.
Favas PJC, Pratas J, Mitra S, Sarkar SK, Venkatachalam P (2016) Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Science of the Total Environment 568: 350–368. https://doi.org/10.1016/j.scitotenv.2016.06.024
Favas PJ, Pratas J, Varun M, D'Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Science of the Total Environment 470–471: 993–1002. https://doi.org/10.1016/j.scitotenv.2013.10.067
Fu-Zhong W, Wan-Qin Y, Zhang J, Li-Qiang Z (2011) Growth responses and metal accumulation in an ornamental plant (Osmanthus fragrans var. thunbergii) submitted to different Cd levels. International Scholarly Research Notices 738138: 1–7. https://doi.org/10.5402/2011/738138
He JD, Wang YD, Hu N, Ding D, Sun J, Deng QW, Li CW, Xu F (2015) An artificially constructed Syngonium podophyllum–Aspergillus niger combinate system for removal of uranium from wastewater. Environmental Science and Pollution Research 22(23): 18918–18926. https://doi.org/10.1007/s11356-015-5008-3
Horemans N, Van Hees M, Saenen E, Van Hoeck A, Smolders V, Blust R, Vandenhove H (2016) Influence of nutrient medium composition on uranium toxicity and choice of the most sensitive growth related endpoint in Lemna minor. Journal of Environmental Radioactivity 2: 427–437. https://doi.org/10.1016/j.jenvrad.2015.06.024
Hoagland DR (1920) Optimum nutrient solutions for plants. Science 52(1354): 562–564. https://doi.org/10.1126/science.52.1354.562
Ibeanu IG (2003) Tin mining and processing in Nigeria: cause for concern? Journal of Environmental Radioactivity 64(1): 59–66. https://doi.org/10.1016/s0265-931x(02)00058-9
Jagetiya B, Sharma A (2013) Optimization of chelators to enhance uranium uptake from tailings for phytoremediation. Chemosphere 91(5): 692–696. https://doi.org/10.1016/j.chemosphere.2012.11.044
Jha VN, Tripathi RM, Sethy NK, Sahoo SK (2016) Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India. Science of the Total Environment 539: 175–184. https://doi.org/10.1016/j.scitotenv.2015.08.120
Li GY, Hu N, Ding DX, Zheng JF, Liu YL, Wang YD, Nie XQ (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bulletin of Environmental Contamination and Toxicology 86(6): 646–652. https://doi.org/10.1007/s00128-011-0291-2
Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. Journal of Hazardous Materials 173(1-3): 589–596. https://doi.org/10.1016/j.jhazmat.2009.08.127
Laroche L, Henner P, Camilleri V, Modelko M, Garnier-Laplace J (2005) Root uptake of uranium by a higher plant model (Phaseolus vulgaris) – bioavailability from soil solution. Radioprotection 40 (Suppl. 1): S33–S39. https://doi.org/10.1051/radiopro:2005s1-006
Laurette J, Larue C, Llorens I, Jaillard D, Jouneau PH, Bourguignon J, Carriere M (2012a) Speciation of uranium in plants upon root accumulation and root-to-shoot translocation: a XAS and TEM study. Environmental and Experimental Botany 77: 87–95. https://doi.org/10.1016/j.envexpbot.2011.11.005
Laurette J, Larue C, Mariet C, Brisset F, Khodia H, Bourguignon J, Carriere M (2012b) Influence of uranium speciation on its accumulation and translocation in three plant species: oilseed rape, sunflower and wheat. Environmental and Experimental Botany 77: 96–107. http://doi.org/10.1016/j.envexpbot.2011.11.007
Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. Journal of Hazardous Materials 173(1-3): 589–596. https://doi.org/10.1016/j.jhazmat.2009.08.127
Mahdieh M, Yazdani M, Mahdieh S (2013) The high potential of Pelargonium roseum plant for phytoremediation of heavy metals. Environmental Monitoring and Assessment 185(9): 7877-7881. https://doi.org/10.1007/s10661-013-3141-3
Misson J, Henner P, Morello M, Floriani M, Wu TD, Guerquin-Kern JL, Fevrier L (2009) Use of phosphate to avoid uranium toxicity in Arabidopsis thaliana leads to alterations of morphological and physiological responses regulated by phosphate availability. Environmental and Experimental Botany 67(2): 353–362. https://doi.org/10.1016/j.envexbot.2009.09.001
Nakbanpote W, Meesungnoen O, Prasad MNV (2016) Potential of ornamental plants for phytoremediation of heavy metals and income generation. In: Bioremediation and Bioeconomy. Chapter 9. Elsevier Inc., 179–217 p. https://doi.org/10.1016/B978-0-12-802830-8.00009-5
Negri MC, Hinchman RR (2000) The use of plants for the treatment of radionuclides. In: Raskin I (Ed.) Phytoremediation of toxic metals using plants to clean up the environment. Wiley-Interscience, John Wiley and Sons, Inc. New York, NY, 107–132.
Neves MO, Figueiredo VR, Abreu MM (2012) Transfer of U, Al and Mn in the water-soil-plant (Solanum tuberosum L.) system near a former uranium mining area (Cunha Baixa, Portugal) and implications to human health. Science of the Total Environment 1(416): 156–163. https://doi.org/10.1016/j.scitotenv.2011.11.065
Paschoa AS, Filho AT (1995) Radioactive waste management in developing and newly industrialized countries. Applied Radiation and Isotopes 46(6-7): 707–715. https://doi.org/10.1016/0969-8043(95)00136-0
Pratas J, Paulo C, Favas PJC, Venkatachalam P (2014) Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecological engineering 69: 170–176. https://doi.org/10.1016/j.ecoleng.2014.03.046
Sasmaza A, Obek E (2009) The accumulation of arsenic, uranium, and boron in Lemna gib- ba L. exposed to secondary effluents. Ecological engineering 35(10): 1564–1567. https://doi.org/10.1016/j.ecoleng.2009.06.007
Sebastian A, Prasad MNV (2016) Rice paddies for trace element cleanup: bioeconomic perspectives. Bioremediation and Bioeconomy. Chapter 11. Elsevier Inc., 251–269. https://doi.org/10.1016/B978-0-12-802830-8.00011-3
Soudek P, Petrová S, Benešová D, Dvořáková M, Vaněk T (2011) Uranium uptake by hydroponically cultivated crop plants. Journal of Environmental Radioactivity 102(6): 598–604. https://doi.org/10.1016/j.jenvrad.2011.03.008
Soudek P, Petrova S, Benesova D, Vanek T (2011) Uranium uptake and stress responses of in vitro cultivated hairy root culture of Armoracia rusticana. Agrochimica LV(1): 15–28.
Straczek A, Duquene L, Wegrzynek D, China-Cano E, Wannijn J, Navez J, Vandenhove H (2010) Differences in U root-to-shoot translocation between plant species explained by U distribution in roots. Journal of Environmental Radioactivity 101(3): 258–266. https://doi.org/10.1016/j.jenvrad.2009.11.011
Stylo M, Neubert N, Roebbert Y, Weyer S, Bernier-Latmani R (2015) Mechanism of uranium reduction and immobilization in Desulfovibrio vulgaris biofilms. Environmental Science & Technology 49(17): 10553–10561. https://doi.org/10.1021/acs.est.5b01769
Talebi SM, Darbandi N, Naziri F, Matsyura A (2024) Seed morphometry and fatty acid profile in oilseed and non-oilseed sunflower cultivars. Biochemical Systematics and Ecology 113(1): 104805. https://doi.org/10.1016/j.bse.2024.104805
Talebi SM, Noori M, Nasiri Z (2016) Palynological study of some Iranian Amaranthus taxa. Environmental and Experimental Biology 14(1): 1–7. https://doi.org/10.22364/eeb.14.01
Van Horn JD, Huang H (2006) Uranium (VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coordination Chemistry Reviews 250(7–8): 765–775. https://doi.org/10.1016/j.ccr.2005.09.010
Vicente-Vicente L, Quiros Y, Pérez-Barriocanal F, López-Novoa JM, López-Hernández FJ, Morales AI (2010) Nephrotoxicity of uranium: pathophysiological, diagnostic and therapeutic perspectives. The Journal of Toxicological Sciences 118(2): 324–347. https://doi.org/10.1093/toxsci/kfq178
Wapwera SD, Ayanbimpe GM, Odita CE (2015) Abandoned Mine, Potential Home for the People: A case study of Jos Plateau Tin-mining region. Journal of Architecture and Civil Engineering 9: 429–445. https://doi.org/10.17265/1934-7359/2015.04.007
Yi ZJ, Yao J, Chen HL, Wang F, Yuan ZM, Liu X (2016) Uranium biosorption from aqueous solution onto Eichhornia crassipes. Journal of Environmental Radioactivity154: 43–51. https://doi.org/10.1016/j.jenvrad.2016.01.012
Yi ZJ, Yao J, Chen HL, Wang F, Yuan Zh, Liu X (2016) Batch study of uranium biosorption by Elodea canadensis biomass. Journal of Radioanalytical and Nuclear Chemistry 310(2): 505–513. https://doi.org/10.1007/s10967-016-4839-9

This work is licensed under a Creative Commons Attribution 4.0 International License.

