Nuclear DNA content in some Chondrilla taxa (Asteraceae) of European Russia and Western Kazakhstan
PDF
XML
ePUB

Keywords

Chondrilla
chromosome number
DNA content
flow cytometry

How to Cite

Parkhomenko, A. S., Skaptsov, M. V., Kondratieva, A. O., Efimenko, S. F., & Kashin, A. S. (2025). Nuclear DNA content in some Chondrilla taxa (Asteraceae) of European Russia and Western Kazakhstan. Acta Biologica Sibirica, 11, 49-69. https://doi.org/10.5281/zenodo.14784067

Abstract

The aim of study was to evaluate the nuclear DNA content in samples of Chondrilla taxa from European Russia and Western Kazakhstan using flow cytometry approach. The analysis was performed in 30 populations of 8 taxa from the genus (C. brevirostris, C. laticoronata, C. juncea, C. latifolia, C. graminea, C. canescens, C. ambigua, and C. pauciflora). It was revealed that C. juncea, C. graminea, C. canescens and C. latifolia have the smallest monoploid genome size (1Cx) (1.078–1.098 pg), C. laticoronata and C. brevirostris have the intermediate values (1.190–1.203 pg), and C. pauciflora and C. ambigua have the largest (1.309–1.449 pg), i.e. the DNA content consistently increases by approximately 10% between these groups of taxa. The obtained results confirm the opinion that C. juncea, C. graminea, C. latifolia and C. canescens are synonymous with the priority name C. juncea. C. ambigua is the only one diploid species among the studied taxa. C. pauciflora is most likely its triploid cytotype. The position of C. laticoronata and C. brevirostris DNA contents between the C. juncea subspecies group, and the group including C. pauciflora and C. ambigua can be explained by distant hybridization that took place in the past, when C. ambigua or C. pauciflora acted as a maternal parent, and two species from the subgenus Chondrilla, different for each combination, acted as a paternal ones. The obtained results indicate that within the studied range the DNA content in Chondrilla at the interpopulation level changes regularly along the latitudinal gradient. From the south to about 50 °N, the genome size increases. From 50 °N to the north, the nuclear DNA content decreases.

https://doi.org/10.5281/zenodo.14784067
PDF
XML
ePUB

References

Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0). Available from http://data.kew.org/cvalues/ [accessed 23 Desember 2022]

Bhadra S, Leitch IJ, Onstein RE (2023) From genome size to trait evolution during angiosperm radiation. Trends in Genetics 39(10): 728–735. https://doi.org/10.1016/j.tig.2023.07.006

Bureš P, Elliott TL, Veselý P, Šmarda P, Forest F, Leitch IJ, Lughadha EN, Gomez MS, Pironon S, Brown MJM, Šmerda Ja, Zedek F (2024) The global distribution of angiosperm genome size is shaped by climate. New Phytologist 242(2): 744–759. https://doi.org/10.1111/nph.19544

Depository of Live Systems (branch "Plants") (2024) Collection "Moscow University Herbarium". Available from: https://plant.depo.msu.ru/open/public/item/MW0551534 [Аccessed on 10 December 2024]

van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philosophical Transactions of the Royal Society B: Biological Sciences 358(1434): 1113–1121. https://doi.org/10.1098/rstb.2003.1302

Doležel J, Greilhuber J (2010) Nuclear genome size: Are we getting closer? Cytometry A 77(7): 635–42. https://doi.org/10.1002/cyto.a.20915

Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51: 127–128. https://doi.org/10.1002/cyto.a.10013

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Annals of Botany 82: 17–26. https://doi.org/10.1093/oxfordjournals.aob.a010312

Garcia S, Hidalgo O, Jakovljević I, Siljak-Yakovlev S, Vigo J, Garnatje T, Vallès J (2013) New data on genome size in 128 Asteraceae species and subspecies, with first assessments for 40 genera, 3 tribes and 2 subfamilies. Plant Biosystems 147: 1219–1227. https://doi.org/10.1080/11263504.2013.863811

Gaskin JF, Schwarzländer M, Kinter CL, Smith JF, Novak SJ (2013) Propagule pressure, genetic structure, and geographic origins of Chondrilla juncea (Asteraceae): an apomictic invader on three continents. American Journal of Botany 100: 1871–1882. https://doi.org/10.3732/ajb.1200621

Global Compositae Checklist (GCC) (2023) Int. Compos. Alliance. Checklist dataset. Available from: https://doi.org/10.15468/g7yhgt [Аccessed on 27 April 2023]

Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews 76: 65–101. https://doi.org/10.1111/j.1469-185X.2000.tb00059.x

Kashin AS, Kritskaya TA, Popova AO, Parkhomenko AS (2017) ISSR analysis of genetic diversity of Chondrilla species (Asteraceae) in European part of Russia. Bulletin of Moscow Society of Naturalists. Biological series 122(1): 60–70. [In Russian]

Kashin AS, Kritskaya TA, Parkhomenko AS, Schanzer IA (2019) Genetic polymorphism in Chondrilla (Asteraceae) in southern European Russia and the nature of Chondrilla juncea L. Nordic Journal of Botany 37(11): 402–420. https://doi.org/10.1111/njb.02420

Kashin AS, Popova AO, Kochanova IS, Ugolnikova EV, Polyakova YA (2015) Some parameters of the seed reproduction system in populations of Chondrilla (Asteraceae) species in the Lower Volga region. Botanicheskii zhurnal 100(8): 828–840. https://doi.org/10.1134/S0006813615080074 [In Russian]

Kashin AS, Parkhomenko AS, Kondratieva AO, Bogoslov AV, Shilova IV (2024) Diversity of the genus Chondrilla L. (Asteraceae) in Eastern Europe. Biodiversitas, Journal of Biological Diversity 25(5): 1901–1910. https://doi.org/10.13057/biodiv/d250506

Kashin AS, Petrova NA, Shanzer IA, Kondratyeva AO, Shilova IV, Parkhomenko AS (2018) Variability of morphological parameters of some Chondrilla (Asteraceae) taxa in European Russia in context of their taxonomy. Botanicheskii zhurnal 103(11): 1407–1436. https://doi.org/10.1134/S0006813618110030 [In Russian]

Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81–96.

Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biological Journal of the Linnean Society 82(4): 651–663. https://doi.org/10.1111/j.1095-8312.2004.00349.x

Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF (2007) Punctuated genome size evolution in Liliaceae. Journal of Evolutionary Biology 20: 2296–2308. https://doi.org/10.1111/j.1420-9101.2007.01416.x

Leonova TG (1964) The genus Chondrilla – Chondrilla L. In: Bobrov EG, Tsvelev NN (Eds) Flora of USSR. Nauka, Moscow-Leningrad, 560–586. [In Russian]

Leonova TG (1989) Chondrilla – Chondrilla L. In: Tsvelev NN (Ed.). Flora of European part of USSR. Vol. 8. Nauka, Leningrad, 57–61. [In Russian]

Maevskii PF (2014) Flora of middle zone of the European part of USSR. KMK Scientific Press, Moscow, 635 pp. [In Russian]

Nasseh Y (2010) Revision on the genera Chondrilla and Heteroderis (Asteraceae) in Iran. Iranian Journal of Botany 16(1): 91–95.

Orsenigo S, Adorni M, Alessandrini A, Armiraglio S, Castello M, Forte L, Gennai M, Magrini S, Medagli P, Montagnani C, Prosser F, Selvaggi A, Villani M, Viciani D, Wagensommer RP, Fenu G (2019) Global and regional IUCN red list assessments. Italian Botanist 7: 107–124. https://doi.org/10.3897/italianbotanist.7.35467

Parkhomenko AS, Kashin AS (2018) Karyotypic variability in some species of the genus Chondrilla (Asteraceae). Botanicheskii zhurnal 103(6): 726–739. https://doi.org/10.1134/S0006813618060030 [In Russian]

Parkhomenko AS, Kashin AS, Grebenyuk LV (2019) Chromosome polymorphism in Chondrilla (Asteraceae) species in the European part of the range. Botanicheskii zhurnal 104(4): 137–154. https://doi.org/10.1134/S0006813619040069 [In Russian]

Parkhomenko AS, Kondratieva AO, Bogoslov AV, Shilova IV, Kashin AS (2023) Morphological variability in Chondrilla taxon populations in European Russia and adjacent territories. Povolzhskiy Journal of Ecology 3: 331–351. https://doi.org/10.35885/1684-7318-2023-3-331-351 [In Russian]

Parkhomenko АS, Kuzmina USh, Musin KhG, Efimenko SF, Epifanov VS, Kashin AS (2023) Preliminary assessment of nuclear DNA content in Chondrilla (Asteraceae) plants of European Russia and Western Kazakhstan using flow cytometry. Izvestiya of Saratov University. Chemistry. Biology. Ecology 23(2): 197–208. https://doi.org/10.18500/1816-9775-2023-23-2-197-208 [In Russian]

Pellicer J, Leitch IJ (2019) The Plant DNA C‐values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 222(2). https://doi.org/10.1111/nph.16261

Pfosser М, Amon A, Lelley Т, Heberle-Bors E (1995) Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21(4): 387–393.

The World Flora Online (2023) Available from: http://www.worldfloraonline.org/ [Аccessed on 10 January 2023]

Tremetsberger K, Gemeinholzer B, Zetzsche H, Blackmore S, Kilian N, Talavera S (2013) Divergence time estimation in Cichorieae (Asteraceae) using a fossil-calibrated relaxed molecular clock. Organisms Diversity and Evolution 13: 1–13. https://doi.org/10.1007/s13127-012-0094-2

Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1976) Flora Europaea: Plantaginaceae to Compositae (and Rubiaceae). Vol. 4. Cambridge University Press, Cambridge, 505 pp.

Woellner R, Bräuchler C, Kollmann J, Wagner TC (2022) Biological flora of Central Europe: Chondrilla chondrilloides (Ard.) H. Karst. Perspectives in Plant Ecology, Evolution and Systematics 54: 125657. https://doi.org/10.1016/j.ppees.2021.125657

Woellner R, Müller N, Reich M, Wagner TC, Kollmann J (2019) Species conservation measures for endangered wild river species – a potential study on the Bavarian Alpine rivers using four example species. Natur und Landschaft 94: 509–516. https://doi.org/10.17433/12.2019.50153753.509-516 [In German]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...