Differences in individual behavior and trophic niche of the red wood ant Formica aquilonia from urban and natural habitats: a case study in Novosibirsk region (West Siberia, Russia)
PDF
XML
ePUB

Keywords

Anthropogenic disturbance
conservation
behavior
nutrition
stable isotops
animal personality
urbanization

How to Cite

Iakovlev, I. K., & Maslov, A. A. (2025). Differences in individual behavior and trophic niche of the red wood ant Formica aquilonia from urban and natural habitats: a case study in Novosibirsk region (West Siberia, Russia). Acta Biologica Sibirica, 11, 137-159. https://doi.org/10.5281/zenodo.14833695

Abstract

Behavior plays a key role in the ability of animals to adapt to human-induced environmental change, although the consistency of these behavioral changes and their links to ecological niche are less clear. In this study, we examined the effects of habitat type and season on behavioral variation, trophic isotopic niche, and their relationships in the ant Formica aquilonia, a keystone species of forest communities in North Eurasia, collected from an urban forest park and a natural forest in spring and autumn. We found that exploratory activity was lower in urban than in natural forest ants. Aggression scores towards competitors (Lasius fuliginosus, L. niger) were similar in both habitats, but urban ants interacted longer with L. niger. Individual ant responses were positively correlated as an aggression-boldness syndrome (more aggressive individuals are more exploratory) in the natural habitat, but not in the urban environment, where the association between aggression and exploration was negative in autumn and decoupled in spring. The trophic niche of the ants differed between the habitats, expressed by lower δ15N and δ13C values in urban ants. It indicates that ants in the urban park fed at a lower trophic level and presumably consumed less tree-related resources than in the natural forest. Exploratory activity was positively correlated with δ13C value, suggesting a possible link between personality traits and ant diet. Our results on ants support findings on human-induced behavioral changes in vertebrates and highlight the need for further studies on the adaptation of wood ants to life in urban environments.

https://doi.org/10.5281/zenodo.14833695
PDF
XML
ePUB

References

Balzani P, Dekoninck W, Feldhaar H, Freitag A, Frizzi F, Frouz J, Masoni A, Robinson E, Sorvari J, Santini G (2022) Challenges and a call to action for protecting European red wood ants. Conservation Biology 36(6): e13959. https://doi.org/10.1111/cobi.13959

Belskaya E, Gilev A, Belskii E (2017) Ant (Hymenoptera, Formicidae) diversity along a pollution gradient near the Middle Ural copper smelter, Russia. Environmental Science and Pollution Research 24(11): 10768–10777. https://doi.org/10.1007/s11356-017-8736-8

Bengston SE, Dornhaus A (2014) Be meek or be bold? A colony-level behavioral syndrome in ants. Proceedings of the Royal Society B: Biological Sciences 281(1791): 20140518. https://doi.org/10.1098/rspb.2014.0518

Bókony V, Kulcsar A, Toth Z, Liker A (2012) Personality traits and behavioral syndromes in differently urbanized populations of house sparrows (Passer domesticus). PloS one 7(5): e36639. https://doi.org/10.1371/journal.pone.0036639

Carrete M, Lambertucci SA, Speziale K, Ceballos O, Travaini A, Delibes M, Donázar JA (2010) Winners and losers in human‐made habitats: interspecific competition outcomes in two Neotropical vultures. Animal Conservation 13(4): 390–398. https://doi.org/10.1111/j.1469-1795.2010.00352.x

Caspi T, Johnson JR, Lambert MR, Schell CJ, Sih A (2022) Behavioral plasticity can facilitate evolution in urban environments. Trends in Ecology & Evolution 37(12): 1092–1103. https://doi.org/10.1016/j.tree.2022.08.002

Castañeda I, Bellard C, Jarić I, Pisanu B, Chapuis JL, Bonnaud E (2019) Trophic patterns and home-range size of two generalist urban carnivores: a review. Journal of Zoology 307(2): 79–92. https://doi.org/10.1111/jzo.12623

Contala ML, Krapf P, Steiner FM, Schlick‐Steiner BC (2024) Foraging valor linked with aggression: selection against completely abandoning aggression in the high‐elevation ant Tetramorium alpestre? Insect science 31(3): 953–970. https://doi.org/10.1111/1744-7917.13263

Dlussky GM (1967) Ants of Genus Formica. Nauka, Moscow, 236 pp. [In Russian]

Evans J, Boudreau K, Hyman J (2010) Behavioural syndromes in urban and rural populations of song sparrows. Ethology 116(7): 588–595. https://doi.org/10.1111/j.1439-0310.2010.01771.x

Faeth SH, Bang C, Saari S (2011) Urban biodiversity: patterns and mechanisms. Annals of the new York Academy of Sciences 1223(1): 69–81. https://doi.org/10.1111/j.1749-6632.2010.05925.x

Feldhaar H, Gebauer G, Blüthgen N (2010) Stable isotopes: past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecological News 13: 3–13. https://doi.org/10.25849/myrmecol.news_013:003

Gaber H, Ruland F, Jeschke JM, Bernard-Verdier M (2024) Behavioral changes in the city: The common black garden ant defends aphids more aggressively in urban environments. Ecology and Evolution 14(7): e11639. https://doi.org/10.1002/ece3.11639

Gámez S, Potts A, Mills KL, Allen AA, Holman A, Randon PM, Harris NC (2022) Downtown diet: a global meta-analysis of increased urbanization on the diets of vertebrate predators. Proceedings of the Royal Society B 289(1970): 20212487. https://doi.org/10.1098/rspb.2021.2487

Gibb H, Cunningham SA (2011) Habitat contrasts reveal a shift in the trophic position of ant assemblages. Journal of Animal Ecology 80(1): 119–127. https://doi.org/10.1111/j.1365-2656.2010.01747.x

Glon MG, Larson ER, Pangle KL (2016) Connecting laboratory behavior to field function through stable isotope analysis. PeerJ 4: e1918. https://doi.org/10.7717/peerj.1918

Grover CD, Kay AD, Monson JA, Marsh TC, Holway DA (2007) Linking nutrition and behavioral dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proceedings of the Royal Society B: Biological Sciences 274(1628): 2951–2957. https://doi.org/10.1098/rspb.2007.1065

Gunn RL, Hartley IR, Algar AC, Niemelä PT, Keith SA (2022) Understanding behavioral responses to human-induced rapid environmental change: a meta-analysis. Oikos 2022(4): e08366. https://doi.org/10.1111/oik.08366

Hakala SM, Seppa P, Helantera H (2019) Evolution of dispersal in ants (Hymenoptera: Formicidae): a review on the dispersal strategies of sessile superorganisms. Myrmecological News 29: 35–55. https://doi.org/10.25849/myrmecol.news_029:035

Harris BA, Stevens DR, Mathis KA (2024) The effect of urbanization and temperature on thermal tolerance, foraging performance, and competition in cavity-dwelling ants. Ecology and Evolution 14(2): e10923. https://doi.org/10.1002/ece3.10923

Herath AP, Wat KK, Banks PB, McArthur C (2021) Animal personality drives individual dietary specialisation across multiple dimensions in a mammalian herbivore. Functional Ecology 35(10): 2253–2265. https://doi.org/10.1111/1365-2435.13893

Holway DA, Suarez AV (2006) Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biological conservation 127(3): 319– 326. https://doi.org/10.1016/j.biocon.2005.05.016

Iakovlev IK, Novgorodova TA, Tiunov AV, Reznikova ZI (2017) Trophic position and seasonal changes in the diet of the red wood ant Formica aquilonia as indicated by stable isotope analysis. Ecological Entomology 42(3): 263–272. https://doi.org/10.1111/een.12384

Iakovlev IK, Maslov AA (2018) Interim results of red wood ants (Hymenoptera, Formicidae) settlement monitoring in Novosibirsk city and Novosibirskaya Oblast. Euroasian Ento mological Journal 17(6): 440–444. [In Russian]

Jacquier L, Molet M, Doums C (2023) Urban colonies are less aggressive but forage more than their forest counterparts in the ant Temnothorax nylanderi. Animal Behavior 199: 11–21. https://doi.org/10.1016/j.anbehav.2023.02.004

Jandt JM, Bengston S, Pinter‐Wollman N, Pruitt JN, Raine NE, Dornhaus A, Sih A (2014) Behavioral syndromes and social insects: personality at multiple levels. Biological Reviews 89(1): 48–67. https://doi.org/10.1111/brv.12042

Kaiser A, Merckx T, Van Dyck H (2020) An experimental test of changed personality in butterflies from anthropogenic landscapes. Behavioral Ecology and Sociobiology 74(7): 86. https://doi.org/10.1007/s00265-020-02871-8

Katzerke A, Neumann P, Pirk CW, Bliss P, Moritz RF (2006) Seasonal nestmate recognition in the ant Formica exsecta. Behavioral Ecology and Sociobiology 61: 143–150. https://doi.org/10.1007/s00265-006-0245-6

Korobushkin DI, Gongalsky KB, Tiunov AV (2014) Isotopic niche (δ13С and δ15N values) of soil macrofauna in temperate forests. Rapid communications in mass spectrometry 28(11): 1303–1311. https://doi.org/10.1002/rcm.6903

Kotze DJ, Lowe EC, MacIvor JS, Ossola A, Norton BA, Hochuli DF, Hahs AK (2022) Urban forest invertebrates: how they shape and respond to the urban environment. Urban Ecosystems 25(6): 1589–1609. https://doi.org/10.1007/s11252-022-01240-9

Kralj-Fišer S, Hebets EA, Kuntner M (2017) Different patterns of behavioral variation across and within species of spiders with differing degrees of urbanization. Behavioral Ecology and Sociobiology 71: 1–15. https://doi.org/10.1007/s00265-017-2353-x

Lowry H, Lill A, Wong BB (2013) Behavioral responses of wildlife to urban environments. Biological reviews 88(3): 537–549. https://doi.org/10.1111/brv.12012

Mabelis AA (1978) Wood ant wars the relationship between aggression and predation in the red wood ant (Formica polyctena Forst.). Netherlands Journal of Zoology 29(4): 451–620. https://doi.org/10.1163/002829679X00016

Magura T, Horváth R, Mizser S, Tóth M, Nagy DD, Csicsek R, Balla E, Lövei GL (2022) Urban individuals of three rove beetle species are not more exploratory or risk-taking than rural conspecifics. Insects 13(8): 757. https://doi.org/10.3390/insects13080757

Magura T, Mizser S, Horváth R, Nagy DD, Tóth M, Csicsek R, Lövei GL (2021) Are there personality differences between rural vs. urban-living individuals of a specialist ground beetle, Carabus convexus? Insects 12(7): 646. https://doi.org/10.3390/insects12070646

Mäki-Petäys H, Zakharov A, Viljakainen L, Corander J, Pamilo P (2005) Genetic changes associated to declining populations of Formica ants in fragmented forest landscape. Molecular Ecology 14(3): 733–742. https://doi.org/10.1111/j.1365-294X.2005.02444.x

McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biological conservation 127(3): 247–260. https://doi.org/10.1016/j.biocon.2005.09.005

Menke SB, Guénard B, Sexton JO, Weiser MD, Dunn RR, Silverman J (2011) Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosystems 14: 135–163. https://doi.org/10.1007/s11252-010-0150-7

Mikhaleiko BA, Babenko AS, Khovalyg AO, Mongush SD, Dongak MI, Kanzivaa SO, Ondar SO, Kirpotin SN (2024) The influence of ants on the environment and their relationship with ecosystem components. Acta Biologica Sibirica 10: 901–919. https://doi.org/10.5281/zenodo.13705509

Miranda AC (2017) Mechanisms of behavioral change in urban animals: the role of microevolution and phenotypic plasticity. In: Murgui E, Hedblom M (Eds) Ecology and conservation of birds in urban environments. Springer, Cham, 113–132. https://doi.org/10.2307/1381606

Miranda AC, Schielzeth H, Sonntag T, Partecke J (2013) Urbanization and its effects on personality traits: a result of microevolution or phenotypic plasticity? Global change biology 19(9): 2634–2644. https://doi.org/10.1111/gcb.12258

Newsome SD, Garbe HM, Wilson EC, Gehrt SD (2015) Individual variation in anthropogenic resource use in an urban carnivore. Oecologia 178: 115–128. https://doi.org/10.1007/s00442-014-3205-2

Novgorodova TA (2005) Ant-aphid interactions in multispecies ant communities: Some ecological and ethological aspects. European Journal of Entomology 102(3): 495. http://doi.org/10.14411/eje.2005.071

Pagani-Núñez E, Liang D, He C, Zhou X, Luo X, Liu Y, Goodale E (2019) Niches in the Anthropocene: passerine assemblages show niche expansion from natural to urban habitats. Ecography 42(8): 1360–1369. https://doi.org/10.1111/ecog.04203

Peng MH, Liu KL, Tsai CY, Shiodera S, Haraguchi TF, Itoh M, Tseng SP, Yang CCS, Sing- ham GV, Neoh KB (2023) Urbanization influences the trophic position, morphology, and colony structure of invasive African big-headed ants (Hymenoptera: Formicidae) in Taiwan. Myrmecological News 33: 197–209. https://doi.org/10.25849/myrmecol.news_033:197

Penick CA, Savage AM, Dunn RR (2015) Stable isotopes reveal links between human food inputs and urban ant diets. Proceedings of the Royal Society B: Biological Sciences 282(1806): 20142608. https://doi.org/10.1098/rspb.2014.2608

Perfecto I, Philpott SM (2023) Ants (Hymenoptera: Formicidae) and ecosystem functions and services in urban areas: a reflection on a diverse literature. Myrmecological News 33: 103–122. https://doi.org/10.25849/myrmecol.news_033:103

Philpott SM, Perfecto I, Armbrecht I, Parr CL (2009) Ant diversity and function in disturbed and changing habitats. In: Lach L, Parr CL (Eds) Ant ecology. Oxford University Press, Oxford, 137–156. http://doi.org/10.1093/acprof:oso/9780199544639.003.0008

Piano E, Souffreau C, Merckx T, Baardsen LF, Backeljau T, Bonte D, Hendrickx F (2020a) Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Global change biology 26(3): 1196–1211. https://doi.org/10.1111/gcb.14934

Piano E, Bona F, Isaia M (2020b) Urbanization drivers differentially affect ground arthropod assemblages in the city of Turin (NW-Italy). Urban Ecosystems 23(3): 617–629. https://doi.org/10.1007/s11252-020-00937-z

Pollock CJ, Capilla-Lasheras P, McGill RA, Helm B, Dominoni DM (2017) Integrated behavioral and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Scientific reports 7(1): 5014. https://doi.org/10.1038/s41598-017-04575-y

Putyatina TS, Perfilieva KS, Zakalyukina YV (2017) Typification of urban habitats, with ant assemblages of Moscow city taken as an example. Entomological Review 97: 1053–1062. https://doi.org/10.1134/S0013873817080048

Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biological reviews 82(2): 291–318. https://doi.org/10.1111/j.1469-185X.2007.00010.x

Reid R, Capilla-Lasheras P, Haddou Y, Boonekamp J, Dominoni DM (2024) The impact of urbanization on health depends on the health metric, life stage and level of urbanization: a global meta-analysis on avian species. Proceedings of the Royal Society B 291(2027): 20240617. https://doi.org/10.1098/rspb.2024.0617

Reznikova Z (2021) Ants’ personality and its dependence on foraging styles: Research perspectives. Frontiers in Ecology and Evolution 9: 661066. https://doi.org/10.3389/fevo.2021.661066

Ritzel K, Gallo T (2020) Behavior change in urban mammals: a systematic review. Frontiers in Ecology and Evolution 8: 576665. https://doi.org/10.3389/fevo.2020.576665

Rosengren R (1977) Foraging strategy of wood ants (Formica rufa group) I Age polyethism and topographic traditions. Acta Zoologica Fennica 149: 2–30.

Salas-López A, Violle C, Munoz F, Menzel F, Orivel J (2022) Effects of habitat and competition on niche partitioning and community structure in neotropical ants. Frontiers in Ecology and Evolution 10: 863080. https://doi.org/10.3389/fevo.2022.863080

Santos MN (2016) Research on urban ants: approaches and gaps. Insectes Sociaux 63(3): 359–371. https://doi.org/10.1007/s00040-016-0483-1

Scales J, Hyman J, Hughes M (2011) Behavioral syndromes break down in urban song sparrow populations. Ethology 117(10): 887–895. https://doi.org/10.1111/j.1439- 0310.2011.01943.x

Schuett W, Delfs B, Haller R, Kruber S, Roolfs S, Timm D, Willman M, Drees C (2018) Ground beetles in city forests: does urbanization predict a personality trait? PeerJ 6: e4360. https://doi.org/10.7717/peerj.4360

Seifert B (2018) The ants of central and north Europe. Lutra Verlags – und Vertriebsgesells chaft, Tauer, 408 pp.

Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends in ecology & evolution 19(7): 372–378. https://doi.org/10.1016/j. tree.2004.04.009

Sih A, Stamps J, Yang LH, McElreath R, Ramenofsky M (2010) Behavior as a key component of integrative biology in a human-altered world. Integrative and comparative biology 50(6): 934–944. https://doi.org/10.1093/icb/icq148

Sol D, Lapiedra O, González-Lagos C (2013) Behavioural adjustments for a life in the city. Animal behaviour 85(5): 1101–1112. https://doi.org/10.1016/j.anbehav.2013.01.023

Sol D, Maspons J, Gonzalez-Voyer A, Morales-Castilla I, Garamszegi LZ, Møller AP (2018) Risk-taking behavior, urbanization and the pace of life in birds. Behavioral Ecology and Sociobiology 72: 1–9. https://doi.org/10.1007/s00265-018-2463-0

Sol D, Maspons J, Vall-Llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP (2012) Unraveling the life history of successful invaders. Science 337(6094): 580–583. https://doi.org/10.1126/science.1221523

Sorvari J, Hakkarainen H (2004) Habitat-related aggressive behavior between neighbouring colonies of the polydomous wood ant Formica aquilonia. Animal behavior 67(1): 151–153. https://doi.org/10.1016/j.anbehav.2003.03.009

Stockan JA, Robinson EJ (Eds) (2016) Wood ant ecology and conservation. Cambridge University Press, Cambridge, 304 pp. https://doi.org/10.1017/CBO9781107261402

Szabó B, Korányi D, Gallé R, Lövei GL, Bakonyi G, Batáry P (2023) Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: a global meta-analysis. Science of the Total Environment 859: 160145. https://doi.org/10.1016/j.scitotenv.2022.160145

Theódórsson BK, Ólafsdóttir GÁ (2022) Laboratory measures of boldness correlate with ecological niche in threespine stickleback. Ecology and Evolution 12(8): e9235. https://doi.org/10.1002/ece3.9235

Tillberg CV, McCarthy DP, Dolezal AG, Suarez AV (2006) Measuring the trophic ecology of ants using stable isotopes. Insectes sociaux 53: 65–69. https://doi.org/10.1007/s00040- 005-0836-7

Toscano BJ, Gownaris NJ, Heerhartz SM, Monaco CJ (2016) Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182: 55–69. https://doi.org/10.1007/s00442-016-3648-8

Trigos-Peral G, Maák IE, Schmid S, Chudzik P, Czaczkes TJ, Witek M, Casacci LP, Sánchez- García D, Lőrincz Á, Kochanowski M, Heinze J (2024) Urban abiotic stressors drive changes in the foraging activity and colony growth of the black garden ant Lasius niger. Science of The Total Environment 915: 170157. https://doi.org/10.1016/j.scitotenv.2024.170157

Tryjanowski P, Morelli F, Møller AP (2020) Urban birds: Urban avoiders, urban adapters, and urban exploiters. In: Douglas B, Anderson PML, Goode D, Houck MC, Maddox D, Nagendra H, Tan PY (Eds) The Routledge Handbook of Urban Ecology. Routledge, Abingdon, 399–411. https://doi.org/10.4324/9780429506758

Völkl W, Woodring J, Fischer M, Lorenz MW, Hoffmann KH (1999) Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118: 483–491. https://doi.org/10.1007/s004420050751

Wilson MW, Ridlon AD, Gaynor KM, Gaines SD, Stier AC, Halpern BS (2020) Ecological impacts of human-induced animal behavior change. Ecology Letters 23(10): 1522–1536. https://doi.org/10.1111/ele.13571

Wittman SE, O'Dowd DJ, Green PT (2018) Carbohydrate supply drives colony size, aggression, and impacts of an invasive ant. Ecosphere 9(9): e02403. https://doi.org/10.1002/ecs2.2403

Zakharov AA (2015) Ants of forest communities. Their life and role in the forest. KMK, Moscow, 404 pp. [In Russian]

Zakharov AA, Zakharov RA (2022) Annual life cycle of the anthill of Formica s. str. (Hymenoptera, Formicidae). Entomological Review 102(4): 413–431. https://doi.org/10.1134/S0013873822040017

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...