Abstract
Lake Baikal is the largest freshwater reservoir inhabited by a number of endemic species flocks belonging to different taxa. However, genomic resources for these groups of endemics are still relatively scarce, limiting understanding of the molecular mechanisms behind their physiology. One of these species flocks are Baikal sculpins of the family Cottidae. Here, we present the first transcriptome assembly for this group using stone sculpin Paracottus knerii (Dybowsky, 1874) as a model. The transcriptome was obtained from the whole body of a P. knerii fry and contains a diverse array of immunity-related transcripts, paving the way for studies investigating the immune response of Lake Baikal sculpins.
References
Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research 44: W3–W10. https://doi.org/10.1093/nar/gkw343
Amparyup P, Charoensapsri W, Samaluka N, Chumtong P, Yocawibun P, Imjongjirak C (2020) Transcriptome analysis identifies immune-related genes and antimicrobial peptides in Siamese fighting fish (Betta splendens). Fish & Shellfish Immunology 99: 403–413. https://doi.org/10.1016/j.fsi.2020.02.030
Astashyn A, Tvedte ES, Sweeney D, Sapojnikov V, Bouk N, Joukov V, Mozes E, Strope PK, Sylla PM, Wagner L, Bidwell SL, Brown LC, Clark K, Davis EW, Smith-White B, Hlavina W, Pruitt KD, Schneider VA, Murphy TD (2024) Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biology 25: 60. https://doi.org/10.1186/s13059-024-03198-7
Bogdanov BE (2007) Variation of stone sculpin Paracottus knerii (Cottidae, Scorpaeniformes) of Baikal and waters of Baikal region. Journal of Ichthyology 47: 162–174. https://doi.org/10.1134/S003294520702004X
Bogdanov BE (2023) The Sculpins (Perciformes: Cottidae) of Lake Baikal and Baikal region: updated checklist with the description of new tax. Limnology and Freshwater Biology 6(3): 63–95. https://doi.org/10.31951/2658-3518-2023-A-3-63
Brown KP, Gerber A, Bedulina D, Timofeyev MA (2021) Human impact and ecosystemic health at Lake Baikal. WIREs Water 8: e1528. https://doi.org/10.1002/wat2.1528
Bucchini F, Del Cortona A, Kreft Ł, Botzki A, Van Bel M, Vandepoele K (2021) TRAPID 2.0: a web application for taxonomic and functional analysis of de novo transcriptomes. Nucleic Acids Research 49: e101–e101. https://doi.org/10.1093/nar/gkab565
Bushmanova E, Antipov D, Lapidus A, Prjibelski AD (2019) rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience 8: giz100. https://doi.org/10.1093/gigascience/giz100
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J (2021) eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Molecular Biology and Evolution 38 (12): 5825–5829. https://doi.org/10.1093/molbev/msab293
Cristescu ME, Adamowicz SJ, Vaillant JJ, Haffner DG (2010) Ancient lakes revisited: from the ecology to the genetics of speciation. Molecular Ecology 19: 4837–4851. https://doi.org/10.1111/j.1365-294X.2010.04832.x
Eddy SR (2011) Accelerated Profile HMM Searches. PLOS Computational Biology 7: e1002195. https://doi.org/10.1371/journal.pcbi.1002195
Goto A, Yokoyama R, Sideleva VG (2015) Evolutionary diversification in freshwater sculpins (Cottoidea): a review of two major adaptive radiations. Environmental Biology of Fishes 98: 307–335. https://doi.org/10.1007/s10641-014-0262-7
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8: 1494–1512. https://doi.org/10.1038/nprot.2013.084
Harrison PW, Amode MR, Austine-Orimoloye O, Azov AG, Barba M, Barnes I, Becker A, Bennett R, Berry A, Bhai J, Bhurji SK, Boddu S, Branco Lins PR, Brooks L, Ramaraju SB, Campbell LI, Martinez MC, Charkhchi M, Chougule K, Cockburn A, Davidson C, De Silva NH, Dodiya K, Donaldson S, El Houdaigui B, Naboulsi TE, Fatima R, Giron CG, Genez T, Grigoriadis D, Ghattaoraya GS, Martinez JG, Gurbich TA, Hardy M, Hollis Z, Hourlier T, Hunt T, Kay M, Kaykala V, Le T, Lemos D, Lodha D, Marques-Coelho D, Maslen G, Merino GA, Mirabueno LP, Mushtaq A, Hossain SN, Ogeh DN, Sakthivel MP, Parker A, Perry M, Piližota I, Poppleton D, Prosovetskaia I, Raj S, Pérez-Silva JG, Salam AIA, Saraf S, Saraiva-Agostinho N, Sheppard D, Sinha S, Sipos B, Sitnik V, Stark W, Steed E, Suner M-M, Surapaneni L, Sutinen K, Tricomi FF, Urbina-Gómez D, Veidenberg A, Walsh TA, Ware D, Wass E, Willhoft NL, Allen J, Alvarez-Jarreta J, Chakiachvili M, Flint B, Giorgetti S, Haggerty L, Ilsley GR, Keatley J, Loveland JE, Moore B, Mudge JM, Naamati G, Tate J, Trevanion SJ, Winterbottom A, Frankish A, Hunt SE, Cunningham F, Dyer S, Finn RD, Martin FJ, Yates AD (2024) Ensembl 2024. Nucleic Acids Research 52: D891–D899. https://doi.org/10.1093/nar/gkad1049
Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P (2019) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research 47: D309–D314. https://doi.org/10.1093/nar/gky1085
Hulsen T (2021) BioVenn – an R and Python package for the comparison and visualization of biological lists using area-proportional Venn diagrams. Data Science 4: 51–61. https://doi.org/10.3233/DS-210032
Jiang H, Lei R, Ding S-W, Zhu S (2014) Skewer: a fast and accurate adapter trimmer for next-generation sequencing pairedend reads. BMC Bioinformatics 15: 182. https://doi.org/10.1186/1471-2105-15-182
Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M (2025) KEGG: biological systems database as a model of the real world. Nucleic Acids Research 53: D672– D677. https://doi.org/10.1093/nar/gkae909
Kokkonen AL, Searle PC, Shiozawa DK, Evans RP (2024) Using de novo transcriptomes to decipher the relationships in cutthroat trout subspecies (Oncorhynchus clarkii). Evolutionary Applications 17: e13735. https://doi.org/10.1111/eva.13735
Levy Karin E, Mirdita M, Söding J (2020) MetaEuk – sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8: 48. https://doi.org/10.1186/s40168-020-00808-x
MacManes MD (2018) The Oyster River Protocol: a multi-assembler and kmer approach for de novo transcriptome assembly. PeerJ 6: e5428. https://doi.org/10.7717/peerj.5428
Manni M, Berkeley MR, Seppey M, Zdobnov EM (2021) BUSCO: Assessing Genomic Data Quality and Beyond. Current Protocols 1: e323. https://doi.org/10.1002/cpz1.323
Menzel P, Ng KL, Krogh A (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature Communications 7: 11257. https://doi.org/10.1038/ncomms11257
Mugue N, Barmintseva A, Etingova A, Didorenko S, Selifanova M, Mugue L, Popov A, Bulakhov A, Kupchinskiy A (2021) Complete mitochondrial genomes of representatives of two endemic sculpin families (Perciformes: Cottoidei) from Baikal – the world’s largest and deepest lake. Mitochondrial DNA Part B 6: 3190–3192. https://doi.org/10.1080/23802359.2021.1989330
Mugue NS, Selifanova MA, Etingova AA, Didorenko SI, Barmintseva AE, Mugue LN, Kupchinskiy AB (2023) Genomic research on endemic species complex of sculpins from Lake Baikal. In: Zaytseva EA (Ed.) Life development under abiotic changes on Earth. Proceedings of the IV All-Russian conference, September 2023, Listvyanka (Russia). Publishing house of Irkutsk State University, Irkutsk, 80–84. https://doi.org/10.24412/CL-34446-2023-4-80-84 [In Russian]
Raghavan V, Kraft L, Mesny F, Rigerte L (2022) A simple guide to de novo transcriptome assembly and annotation. Briefings in Bioinformatics 23: bbab563. https://doi.org/10.1093/bib/bbab563
Rusinek OT (2024) Parasite Fauna of Sand and Stone Sculpins (Scorpaeniformes, Cottidae) from Lake Baikal (Review of Results and Prospects of Investigations). Biology Bulletin Reviews 14: S91–S101. https://doi.org/10.1134/S2079086424700105
Sandel MW, Aguilar A, Neely D, Kirilchik S, Bogdanov B, Fast KM, Millwood J (2024) Sink or Swim: Phylogenomic Analysis of Baikal Sculpins Reveals Multiple Transformations to Pelagic, Bathybenthic, and Lotic Ecomorphologies. Available at SSRN: https://doi.org/10.2139/ssrn.4888603
Sandel MW, Aguilar A, Fast K, O’Brien S, Lapidus A, Allison DB, Teterina V, Kirilchik S (2017) Complete mitochondrial genomes of Baikal oilfishes (Perciformes: Cottoidei), Earth’s deepest-swimming freshwater fishes. Mitochondrial DNA Part B 2: 773–775. https://doi.org/10.1080/23802359.2017.1398603
Sapozhnikova YP, Koroleva AG, Yakhnenko VM, Khanaev IV, Glyzina OYu, Avezova TN, Volkova AA, Mushinskaya AV, Tyagun ML, Shagun AN, Makarov MM, Kirilchik SV, Sudakov NP, Klimenkov IV, Sukhanova LV (2021) Sex Associated Effects of Noise Pollution in Stone Sculpin (Paracottus knerii) as a Model Object in the Context of Human-Induced Rapid Environmental Change. Biology 10: 1063. https://doi.org/10.3390/biology10101063
Shen W, Sipos B, Zhao L (2024) SeqKit2: A Swiss army knife for sequence and alignment processing. iMeta 3: e191. https://doi.org/10.1002/imt2.191
Slater GSC, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6: 31. https://doi.org/10.1186/1471-2105-6-31
Sudakov NP, Klimenkov IV, Bedoshvili YD, Arsent’ev KY, Gorshkov AG, Izosimova ON, Yakhnenko VM, Kupchinskii AB, Didorenko SI, Likhoshway YV (2022) Early structural and functional changes in Baikal Sculpin gills exposed to suspended soot microparticles in experiment. Chemosphere 290: 133241. https://doi.org/10.1016/j.chemosphere.2021.133241
Taliev DN (1955) The Sculpins of Baikal (Cottoidei). Publishing house of the Academy of Sciences of USSR, Moscow, 604 pp. [In Russian]
The Galaxy Community (2024) The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Research 52: W83–W94. https://doi.org/10.1093/nar/gkae410
Wickham H (2016) Programming with ggplot2. In: Wickham H (Ed.) ggplot2: Elegant Graphics for Data Analysis. Springer International Publishing, Cham, 241–253. https://doi.org/10.1007/978-3-319-24277-4_12

This work is licensed under a Creative Commons Attribution 4.0 International License.

