Functional ecology characteristics of key community-forming aquatic and semi-aquatic plant species in Teletskoye Lake (Republic of Altai, Russia)
PDF (English)
XML (English)

Дополнительные файлы

Supplementary material 1 (English)

Как цитировать

Kipriyanova, L. M., Sityaeva, D. V., & Rosbach, S. A. (2024). Functional ecology characteristics of key community-forming aquatic and semi-aquatic plant species in Teletskoye Lake (Republic of Altai, Russia). Acta Biologica Sibirica, 10, 1461–1477. https://doi.org/10.5281/zenodo.14283304

Аннотация

This study explores five primary morpho-functional traits – photosynthetic canopy height, leaf mass, leaf area, specific leaf area, and seed mass – of 17 community-forming species of aquatic and semiaquatic plants in Teletskoye Lake: Alopecurus aequalis, Caltha palustris, Carex acuta, C. vesicaria, Eleocharis palustris, Equisetum fluviatile, Myriophyllum sibiricum, Petasites radiatus, Ranunculus reptans, Ranunculus trichophyllus, Potamogeton alpinus, Potamogeton × cognatus, P. gramineus, P. maackianus, P. perfoliatus, P. praelongus, Subularia aquatica. The greatest leaf mass and area were observed in the hygrohelophyte Caltha palustris and the helophyte Petasites radiatus, whereas the smallest were noted in the miniature amphibious plants – Subularia aquatica and Ranunculus reptans. The highest specific leaf area (SLA) values (leaf area per unit mass) were found in true aquatic plants – hydrophytes. The macrophytes from the Potamogetonaceae family, which are characterized by endozoochoric dispersal, showed the highest seed mass indices, while the primarily hydrochoric annuals such as Alopecurus aequalis and Subularia aquatica displayed the lowest. Statistically significant differences were identified in SLA between floating and submerged leaves in the Potamogetonaceae family, notably between Potamogeton alpinus and Potamogeton gramineus, with submerged leaves showing significantly higher SLA values than floating leaves.

https://doi.org/10.5281/zenodo.14283304
PDF (English)
XML (English)

Литература

Bower FO (1894) Studies in the morphology of spore-producing members. – Equisetineæ and Lycopodineæ Philosophical Transactions of the Royal Society of London 185: 473– 572. https://doi.org/10.1098/rstb.1894.0012

Diaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution 3 (9): 2958–2975. https://doi.org/10.1002/ece3.601

Gaüzère P, Iversen LL, Blonder B (2020) Equilibrium in plant functional trait responses to warming is stronger under higher climate variability during the Holocene. Global Ecology and Biogeography 29(11): 2052–2066. https://doi.org/10.1111/geb.13176

Iversen LL, García-Girón J, Pan Y (2022) Towards linking freshwater plants and ecosystems via functional biogeography. Aquatic Botany 176: 103454. https://doi.org/10.1016/j.aquabot.2021.103454

Lefcheck JS, Bastazini VAG, Griffin JN (2014) Choosing and using multiple traits in functional diversity research. Environmental Conservation 42 (2): 104–107. https://doi.org/10.1017/S0376892914000307

Lisitsyna LI, Papchenkov VG (2000) Flora of water bodies of Russia: Manual to Vascular Plants. Nauka, Moscow, 237 pp. [In Russian]

Maberly SC, Madsen TV (1998) Affinity for CO₂ in relation to the ability of freshwater macrophytes to use HCO₃. Functional Ecology 12: 99–106.

MAP — the macroecology of aquatic plant-functions. http://www.lifeinmud.com/map

Marmottant P, Ponomarenko A, Bienaimé D (2013) The walk and jump of Equisetum spores. Proceedings of the Royal Society B: Biological Sciences 280: 1770. https://doi.org/10.1098/rspb.2013.1465

Movergoz EA, Bobrov AA (2016) Comparative morphology and biology of water buttercups Ranunculus circinatus, R. trichophyllus and R. kauffmannii (Batrachium, Ranunculaceae) in Central Russia. Ecology, morphology and systematics of aquatic plants: Proceedings of the Institute of Biology of Inland Waters of the Russian Academy of Sciences 76(79): 93–118. [In Russian]

Nikolin EG (Ed.) (2020) Manual to higher plants of Yakutia. KMK Scientific Press Ltd., Moscow, 896 pp. [In Russian]

Pan YP, García-Girón J, Iversen LL (2023) Global change and plant-ecosystem functioning in freshwaters. Trends in Plant Science 28(6): 646–660. https://doi.org/10.1016/j.tplants.2022.12.013

Papchenkov VG (2007) Hybrids and little-known species of aquatic plants. Aleksandr Rutman, Yaroslavl, 72 pp. [In Russian]

Papchenkov VG, Shcherbakov AV, Lapirov AG (2006) General concepts of hydrobotany recommended for use. Proceedings of the VI All-Russian school-conference on aquatic macrophytes "Hydrobotany 2005". Rybinsk House of Printing, Rybinsk, 377–378. [In Russian]

Pérez-Harguindeguy P, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2016) New handbook for standardised measurement of plant functional traits world-wide. Australian Journal of Botany 61: 167–234. http://dx.doi.org/10.1071/BT12225_CO

Ragni M, D’Alcalà MR (2004) Light as an information carrier underwater. Journal of Plankton Research 26: 433–443. https://doi.org/10.1093/plankt/fbh044

Robionek A, Banaś K, Merdalski M, Szmeja J (2020) Phenotypic trait variation and life strategy in Ranunculus reptans L. facing water level changes. Botany Letters 168(3):1–14. https://doi.org/10.1080/23818107.2020.1860815

Ronzhina DA, Nekrasova GF, P’yankov VI (2004) Comparative characterization of the pigment complex in emergent, floating, and submerged leaves of hydrophytes. Russian Journal of Plant Physiology 51(1): 21–27. https://doi.org/10.1023/B:RUPP.0000011299.93961.8f

Selegey VV, Selegey TS (1978) Teletskoye Lake. Gidrometeoizdat, Leningrad, 142 pp. [In Russian]

Utkin AI, Ermolova LS, Utkina IA (2008) Surface area of forest plants: essence, parameters, use. Nauka, Moscow, 292 pp. [In Russian]

Yang L, Zhao H, Zuo Z, Li X, Yu D, Wang Z (2021) Generality and Shifts in Leaf Trait Relationships Between Alpine Aquatic and Terrestrial Herbaceous Plants on the Tibetan Plateau. Frontiers in Ecology and Evolution 9: 706237. https://doi.org/10.3389/fevo.2021.706237

Zarubina EYu, Sokolova MI (2007) Higher aquatic vegetation of the northwestern shallow waters of Lake Teletskoye and factors of its formation. World of science, culture and education 3(6): 28–31.

Авторы, публикующиеся в данном журнале, соглашаются со следующими условиями:

a. Авторы сохраняют за собой права на авторство своей работы и предоставляют журналу право первой публикации этой работы с правом после публикации распространять работу на условиях лицензии Creative Commons Attribution License, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылокой на авторов оригинальной работы и оригинальную публикацию в этом журнале.

b. Авторы сохраняют право заключать отдельные договора на неэксклюзивное распространение работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном архиве учреждения или публиковать в составе монографии), с условием сохраниения ссылки на оригинальную публикацию в этом журнале. с. Политика журнала разрешает и поощряет размещение авторами в сети Интернет (например в институтском хранилище или на персональном сайте) рукописи работы как до ее подачи в редакцию, так и во время ее редакционной обработки, так как это способствует продуктивной научной дискуссии и положительно сказывается на оперативности и динамике цитирования статьи 

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...