Relief and ecological niche of mute swan (Cygnus olor (Gmelin, 1803)) wintering in Sivash
PDF (Русский)

Keywords

ecological niche
wintering mute swans
relief
digital elevation model
factor analysis
marginalization
specialization

How to Cite

Zhukov, A. V., & Andryushchenko, A. Y. (2017). Relief and ecological niche of mute swan (Cygnus olor (Gmelin, 1803)) wintering in Sivash. Acta Biologica Sibirica, 3(2), 20-45. https://doi.org/10.14258/abs.v3i2.2730

Abstract

We evaluated the role of terrain as a factor determining the spatial distribution of Mute Swan wintering in the conditions of the Gulf of Siwash. It was found that the number of clusters of mute swans wintering in Sivash subordinate to the log-normal distribution. The arithmetic mean value of the number of clusters is 532.1 ± 203.1 induviduals, median is 129 ind. with a range from 5 to 8.000 ind. Deviation from the normal law of the number of animals can be seen as the result of the impact of limiting factors. The article confirm the hypothesis that the relief is a synthetic reflection of the ecological environment, which determines the spatial distribution of wintering mute swans. We proved that for the quantitative characterization of the relief the digital elevation model and derived data layers that reveal different aspects of the functional significance of the earth's surface as a factor in organizing the structure of the living cover are very important. Axis with 1-4 marginality and specialization, resulting from ENFA-procedure, was significantly different from random alternatives. This indicates that ecogeographic variables selected as prospective predictors are able to identify some of the features of the ecological niche of wintering mute swan. The greatest marginality was characterized by categorical variables that indicate various forms of relief. The greatest preference was registered for various open slopes while the continual variables complement the features of these habitats. Open slopes, naturally, are characterized by a large factor in the erosion, they have more rugged terrain and geomorphological conditions of areas with great diversity. Continual variables are also characterized by a large value in determining the ecological niche specialization of mute swan. Multiple scale organization of the geographical landscape causes the hierarchical organization of the ecological niche. Properties of ecological niches at different scale levels indicate that the nature of perception of reality geomorphological mute swan is significantly different depending on the transmission window size, which determines the level of a large-scale review of the ecological niche. There is certain variation in distance where geomorphological predictors are not able to statistically reflect the particular spatial bird distribution. Properties with marginality tend to appear even at one kilometer distances, whereas properties with specialization - a distance of more than 6 km. At different ranges, some predictors of transmission windows can be inverted: the variability determines the ecological niche with inverted value. Direct gradient analysis allowed us to evaluate the projection of the ecological niche on the individual axes of ecological spatial pattern. Analysis within the HOF-concept showed that the variation of wintering mute swans abundance along the gradient of geomorphological variables could noe be described by the type I model, i.e the mute swan number depends on the geomorphological conditionsof habitat. Another important result is that the gradients for many predictors are unbalanced and/or bimodal.

 

https://doi.org/10.14258/abs.v3i2.2730
PDF (Русский)

References

Andryushchenko, A.Yu., Zhukov, A.V. (2016). Masshtabno–zavisimye jeffekty v strukture jekologicheskoj nishi lebedja–shipuna Cygnus olor (Gmelin, 1803) v period zimovki v predelah zaliva Sivash. Biological Bulletin of Bogdan Chmelnitskiy Meitopol State Pedagogical University, 6(3), 234–247 (in Russian)

Andryushchenko, Yu., Katysh, S., Popenko, V., Siokhin, V., Chercnichko, J. (2010). Metodiki oblіku ptahіv dlja ocіnki stanu resursіv mislivs'kih vidіv vodno–bolotnih ptahіv u mislivs'kih gospodarstvah Azovo–Chornomors'kogo regіonu Ukraїni. Melіtopol, Laguna (in Ukrainian).

Andryushchenko, Yu.A. (2009). Unifikacija metodik srednezimnih uchetov v Azovo–Chernomorskom regione Ukrainy. Bjulleten' ROM: Itogi srednezimnego ucheta vodno–bolotnyh ptic 2006 goda v Azovo–Chernomorskom regione Ukrainy: adaptacija metodik IWC i ih aprobacija, 4, 4–12. (in Russian)

Bock, M., Köthe, R.,(2008). Predicting the Depth of hydrologic Soil Characteristics. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, Heft 19, 13–22.

Boehner, J., Antonic, O. (2009). Land Surface Parameters Specific to Topo–Climatology (pp. 195–226). Hengl, T. & Reuter, H.I. (Eds.). Geomorphometry. Concepts, Software, Applications. Elsevier.

Calenge, C., Basille, M. (2008). A general framework for the statistical exploration of the ecological niche. Journal of Theoretical Biology, 252, 674–685.

Caruso, N., Guerisoli, M., Luengos Vidal, E.M., Castillo, D., Casanave, E.B., Lucherini, M. (2015). Modelling the ecological niche of an endangered population of Puma concolor: First application of the GNESFA method to an elusive carnivore. Ecological Modelling, 297, 11–19.

Davidov, O.V., Rozkos, N.O., Rozkos, O.M. (2013). Zagal'nі osoblivostі poshirennja roslinnostі na berezі zatoki Sivash, Azovs'ke more. Vіsnik Odes'kogo nacіonal'nogo unіversitetu. Geografіchnі ta geologіchnі nauki, 18(3), 57–65 (in Ukrainian).

De Angelo, C., Paviolo, A., Di Bitetti, M. (2011). Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca). The Upper Paraná Atlantic Forest. Divers. Distrib, 17, 422–436.

Dehn, M., Gärtner, H., Dikau, R. (2001). Principles of semantic modeling of landform structures. Computers and Geoscience. Computers & Geosciences, 27, 1005–1010.

Galparsoro, I., Borja, Á., Bald, J., Liria, P., Chust, G. (2009). Predicting suitable habitat for the European lobster (Homarus gammarus) on the Basque continental shelf (Bay of Biscay), using Ecological–Niche Factor Analysis. Ecol. Model, 220, 556–567.

Guisan, A., Weiss, S.B., Weiss, A.D. (1999). GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 143, 107–122.

Hall, L., Krausman, P., Morrison, M. (1997). The habitat concept and a

plea for standard terminology. Wildlife Society Bulletin, 25, 173–182.

Halstead, B.J., Wylie, G.D., Casazza, M.L. (2010). Habitat suitability and conservation of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley of California. Copeia, 4, 591–599.

Hemery, L., Galton–Fenzi, B., Améziane, N., Riddle, M., Rintoul, S., Beaman, R., Post, A., Eléaume, M. (2011). Predicting habitat preferences for Anthometrina adriani (Echinodermata) on the East Antarctic continental shelf. Mar. Ecol. Prog. Ser, 441, 105–116.

Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N. (2002). Ecological–niche factor analysis: How to compute habitat– suitability maps without absence data? Ecology, 83, 2027–2036.

Huisman, J., Olff, H., Fresco, L.F.M. (1993). A hierarchical set of models for species response analysis. Journal of Vegetation Science, 4, 37–46.

Inventarizacija i kadastrovaja harakteristika vodno–bolotnyh ugodij juga Ukrainy. (1993). I.I.Chernichko (Ed.). Bull. № 1. Melitopol, Branta (in Russian)

Jansen, F., Oksanen, J. (2013). How to model species responses along ecological gradients – Huisman–Olff–Fresco models revisited. Journal of Vegetation Science, 24, 1108–1117.

Kolomijchuk, V.P., Matsyura, A.V. (1998). Biologicheskoe raznoobrazie i sistema vzaimootnoshenij rastitel'nosti i kolonial'no gnezdjashhihsja ptic ostrovnyh sistem. Proceed. Int. Conf. “Voprosy bioindikacii i jekologii”. Zaporozh'e, Pavel (in Russian)

Kondrat'ev, A.V. (2002). Ekologija pitanija gusej v Arktike i na puti k nej. Kazarka: Bjulleten' rabochej gruppy po guseobraznym Severnoj Evrazii, 8, 79–99 (in Russian)

Landshafty i fiziko–geograficheskoe rajonirovanie. (1985). In Priroda USSR. Kiev. Naukova dumka (in Russian)

Leontyev, V.K., Leontyev, O.K. (1956). Osnovnye cherty geomorfologii Sivashskoj laguny. Vestnik Moskovskogo universiteta. Ser. Geografija, 2, 185–194 (in Russian)

Liseckij, F.N., Polovinko V.V. (2012). Eerozionnye kateny na zemljanyh fortifikacionnyh sooruzhenijah. Geomorfologija, 2, 65–78 (in Russian)

Lysenko, V.I. (1991). Fauna Ukrainy. Tom 5. Pticy. Vyp. 3. Guseobraznye. Kiev, Naukova dumka (in Russian)

Marushevskky, G.B., Kostyushin, V.A., Siokhin, V.D. (2005). Sivash: priroda i ljudi. Kiev, Wetlands International. (in Russian)

Matsyura, A.V. (1999). Znachenie Sivasha dlja podderzhanija bioraznoobrazija kolonial'no gnezdjashhihsja okolovodnyh ptic vodno–bolotnyh ugodij juga Levoberezhnoj Ukrainy. Zapovіdna sprava v Ukraїnі, 5(2), 37–39. (in Russian)

Matsyura, A.V. (2011). Landshaftno–biotopicheskoe znachenie ostrovov Sivasha dlja gnezdjashhihsja ptic. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 1, 53–58. (in Russian)

McCool, D.K., Renard, K.G., Foster, G.R., (1994). The Revised Universal Soil Loss Equation. Proceed. Int. Workshop on Soil Erosion. The Center for Technology Transfer and Pollution Prevention, Purdue University. West Lafayette, IN., USA.

Mikhaylov, V.A. (2006). Geograficheskaja eevoljucija Sivashskoj laguny. Kul'tura narodov Prichernomor'ja, 6(82), 11–14 (in Russian)

Mitchel, Dzh.K., Bubenzer, G.D. (1984). Raschety poter' pochvy. Erozija pochv. Moscow, Kolos (in Russian)

Moeller, M., Volk, M., Friedrich, K., Lymburner, L. (2008). Placing soil–genesis and transport processes into a landscape context: A multiscale terrain–analysis approach. Journal of Plant Nutrition and Soil Science, 171, 419–430.

Moore, I.D., Nortin, T.W., Williams, J.E. (1993). Modelling environmental heterogeneity in forested landscapes. Journal of Hydrology, 150, 717–747.

Olaya, V., Conrad, O. (2008). Geomorphometry in SAGA. In Hengl, T. & Reuter, H.I. (Eds.). Geomorphometry: concepts, software, applications. Elsevier.

Panagos, P.A., Borrelli, P. Meusburger, K. (2015). New European Slope Length and Steepness Factor (LS–Factor) for Modeling Soil Erosion by Water. Geosciences, 5, 117–126.

Pozachenyuk, E.A. (1986). K metodike fiziko–geograficheskogo rajonirovanija po vnutriregional'nym zakono–mernostjam(na primere Kryma). Prirodnoe rajonirovanie i problema ohrany prirody. Ufa, Bashkir University Press (in Russian)

Priroda Ukrainskoj SSR. Morja i vnutrennie vody. (1987). Greze, V.N., Polikarpov, G.G., Romanenko, V.D. (Eds.). Kiev, Naukova dumka (in Russian)

Sabinevskiy, B.V. (1977). Azovo–Chernomorskoe poberezh'e Ukrainy – kompleksnyj rezervat vodno–bolotnyh ptic. Vestnik zoologii, 2, 44–54 (in Russian)

Sappington, J.M., Longshore, K.M., Thompson, D.B. (2007). Quantifying landscape ruggedness for animal habitat analysis: a case study using desert bighorn sheep in the Mojave Desert. Journal of Wildlife Management, 71(5), 1419–1426.

Sіokhіn, V.D., Aleksandrov, B.G., Chernichko, J.I. (2014). Ocіnka landshaftnogo ta bіologіchnogo rіznomanіttja іntegral'nimi bіologіchnimi іndikatorami ta markerami. Melіtopol. Melitopol State Pedagogical University (in Russian)

Thiebot, J.–B., Lescroel, A., Pinaud, D., Trathan, P.N., Bost, C.–A., (2011). Larger foraging range but similar habitat selection in non–breeding versus breeding subAntarctic penguins. Antarctic Science, 23, 117–126.

Valle, M., Boria, Á., Chust, G., Galparsoro, I., Garmendia, J.M. (2011). Modelling suitable estuarine habitats for Zostera noltii, using Ecological Niche Factor Analysis and Bathymetric LiDAR. Estuar. Coast. Shelf Sci, 94, 144–154.

Wischmeier, W.H., Smith, D.D. (1978). Predicting rainfall erosion losses. Agricultural handbook. Washington. № 537.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.