Аннотация
The aim of this report was to to build phylogenies using bird egg data, because egg data are available for a larger range of species than molecular data, it is cheaper to collect egg data than molecular data, moreover, building trees using egg data provide verification of molecular phylogenies.
We used egg morphological data from the collections of zoological museums in Ukraine and Russia. Two models of egg geometry were used: composite ovoid and polynomial. For the first model we used seven indices of description of eggs, including the traditional elongation index as well as six original indices: index of infundibular (blunt) area, index of lateral area, index of local area, index of asymmetry, Equatorial index, and index of complimentary. All the necessary parameters were obtained from the digital pictures of eggs, processed by original computer software in accordance with suggested schemes. Using Falconiformes species as a case study, we found that measures of egg geometry gave important phylogenetic information: egg parameters clearly separated Falconiformes species from Gaviiformes, Pelicanidae, and Podicepediformes. We proposed usage of the morphological parameters of eggs as additional information in bird systematics.
Key words: birds, eggs, systematic, geometrical parameters.
Литература
Alabi, O.J., Ng’ambi, J.W., Norris, D. (2012). Effect of egg weight on physical egg parameters and hatchability of indigenous Venda Chickens. Asian Journal of Animal and Veterinary Advances 7:166–172.
Amaral, K.F., Jorge, W. (2003). The chromosomes of the Order Falconiformes: a review. Ararajuba 11(1): 65-73.
Andersen, M.J., Nyári, A.S., Mason, I., Joseph, L., Dumbacher, J.P., Filardi, C.E., Moyle, R.G. (2014). Molecular systematics of the world's most polytypic bird: the Pachycephala pectoralis/melanura (Aves: Pachycephalidae) species complex Zoological Journal of the Linnean Society Special Issue: Birds: systematics and phylogeny 170 (3): 566–588.
Barta, Z., Székely, T. (1997). The optimal shape of avian eggs. Functional Ecology 11(5): 656-662.
Clarke, J.A., Tambussi, C.P., Noriega, J.I., Erickson, G.M., Ketcham, R.A., (2005). Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433: 305-308.
Davis K.E, Page R.D.M. (2014). Reweaving the Tapestry: a Supertree of Birds. PLOS Currents Tree of Life. Edition 1. Retrieved from: 10.1371/currents.tol.c1af68dda7c999ed9f1e4b2d2df7a08e.
Deeming, D.C., Ruta. M. (2014a). Egg shape changes at the theropod–bird transition, and a morphometric study of amniote eggs. R. Soc. Open Sci 1: 140311
Demming D.C., Ruta, M (2014b). Amniote egg morphology and the evolution of avian eggs. Royal Society Open Science 1: 140311
Dementyev, G.P. (1951). Predatory birds. In Birds of the USSR. Moscow: Russian Science. (in Russian).
Frantsevich, L.I. (2015). Planimetria of bird egg shape. Retrieved from: http://www.biometrica.tomsk.ru/planirus.htm (in Russian).
Gamauf, A., Haring, E. (2004). Molecular phylogeny and biogeography of Honey-buzzards (genera Pernis and Henicopernis). Journal of Zoological Systematics and Evolutionary Research 42: 145–153.
Harshman, J. (1994). Reweaving the tapestry: what can we learn from Sibley and Ahlquist (1990)? The Auk 111(2): 377-388.
Helbig, A.J., Kocum, A., Seibold, I., Braun, M.J. (2005). A multi-gene phylogeny of aquiline eagles (Aves: Accipitriformes) reveals extensive paraphyly at the genus level. Molecular Phylogenetics and Evolution 35: 147-164.
Hoyt, D.F. (1968). Practical methods of estimating volume and fresh weight of bird eggs. The Auk 96: 73-77.
Huynen, L., Gill, B.J., Millar, C.D., Lambert, D.M. (2010). Ancient DNA reveals extreme egg morphology and nesting behavior in New Zealand's extinct moa. Proceedings of the National Academy of Sciences of the United States of America 107(37): 16201-16206.
Kurochkin, Ye.V. (2000). Four-winged dinosaur and origin of birds. Priroda 5: 3-12 (in Russian).
Kuziakin, A.P. (1954). Survey of oological features and breeding characteristics in birds’ classification. Bulletin MOIP 59 (6): 27-37 (in Russian).
Lerner, H.R., Klaver, M.C., Mindell, D.P. (2008). Molecular phylogenetics of the Buteonine birds of prey (Accipitridae). The Auk 304(2): 304–315.
Lerner, H.R., Mindell, D.P. (2005). Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Molecular Phylogenetics and Evolution 37: 327–346.
Livezey, B.C., Zusi, R.L. (2007). Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological Journal of The Linnean Society 149 (1): 1–95.
Mayr, G. (2005). The postcranial osteology and phylogenetic position of the middle Eocene Messelastur gratulator Peters, 1994 - a morphological link between owls (Strigiformes) and Falconiform birds? Journal of Vertebrate Paleontology 25(3): 635–645.
Mayr, G., Clarke, J. (2003). The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics 19: 527–553.
Mityay, I.S. (2003). New approach of integrated estimation of egg shape. Branta 6: 179–192 (in Russian).
Mityay, I.S. (2008). Use of current technologies in research of bird eggs. Bulletin of Zaporozhye National University. Biological Sciences 1: 191–200 (in Russian).
Preston, F.W (1968). The shape of bird eggs: mathematical aspects. The Auk 85: 454-463.
Richter, S., Wirkner, Ch.S. (2014). A research program for Evolutionary Morphology
Journal of Zoological Systematics and Evolutionary Research 52(4): 338–350.
Sibley, C.G., Ahlquist, J.E. (1990). Phylogeny and Classification of Birds – A Study in Molecular Evolution: Yale University Press.
Slack, K.E. (2012). Avian phylogeny and divergence times based on mitogenomic sequences. Institute of Molecular BioSciences, Massey University, Palmerston North: New Zealand.
Torres, Ch., van Tuinen, M. (2013). Relationships of Birds – Molecules versus Morphology. In: eLS. John Wiley & Sons Ltd, Chichester. Retrieved from: 10.1002/9780470015902.a0003357.pub3
Troscianko, J. (2014). A simple tool for calculating egg shape, volume and surface area from digital images. Ibis 156(4): 874–878.
Wang, N., Kimball, R.T., Braun, E.L., Liang, B., Zhang, Z. (2013) Assessing phylogenetic relationships among Galliformes: a multigene phylogeny with expanded taxon sampling in Phasianidae. PLoS ONE 8(5):e64312.
Welch, A.J., Olson, S.L., Fleischer, R.C. (2014). Phylogenetic relationships of the extinct St Helena petrel, Pterodroma rupinarum Olson, 1975 (Procellariiformes: Procellariidae), based on ancient DNA. Zoological Journal of the Linnean Society. Special Issue: Birds: systematics and phylogeny 170(3): 494–505.
Wink, M., Heidrich, P., Fentzloff, C. (1996). A DNA Phylogeny of Sea Eagles (genus Haliaeetus) Based on Nucleotide Sequences of the Cytochrome b-gene. Biochemical Systematics and Ecology 24 (7-8): 783-791.
Wink M., Sauer-Gürth H. (2000). Advances in the molecular systematics of African raptors. In Raptors at Risk. Chancellor, R.D. & Meyburg, B.-U. (Eds). WWGP: Hancock House.
Wink, M., Seibold, I., Lotfikhah, F., Bednarek, W. (1998). Molecular Systematics of Holarctic Raptors (Order Falconiformes). In Holarctic Birds of Prey. Chancellor, R.D., B.-U. Meyburg & J.J. Ferrero (Eds). ADENEX-WWGP.
Zelenitsky, D.K., Therrien, F., Ridgely, R.C., McGee, A.R., Witmer, L.M. (2012). Evolution of olfaction in non-avian theropod dinosaurs and birds. Proceedings of the Royal Society. Biological Sciences.
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.