ВЛИЯНИЕ УЛЬТРАЗВУКОВОЙ КАВИТАЦИОННОЙ ДИСПЕРГАЦИИ НА ФРАКЦИОННЫЙ СОСТАВ И СОРБЦИОННЫЕ СВОЙСТВА ТОРФА ПО ОТНОШЕНИЮ К ИОНАМ Cu2+
Аннотация
Ультразвуковая кавитационная диспергация торфа до заданных наноразмеров при высоком статическом давлении позволяет получить продукт, обладающий ценными потребительскими качествами. При определении фракционно-группового состава органического вещества торфа, подвергшегося диспергации и исходного образца по методу Н.Н. Бамбалова, Т.Я. Беленькой, показано, что в результате диспергации снижается содержание битумоидов в 2,1 раза, трудногидролизуемых (целлюлоза) и негидролизуемых (лигнин) веществ – в 2,0 и 1,3 раза соответственно, наблюдается увеличение содержания гуминовых кислот, извлекаемых и 0,1 М раствором щелочи (в 1,6 раза) и 0,025 М раствором пирофосфата натрия (в 5,9 раза), увеличивается массовая доля суммы водорастворимых и легкогидролизуемых веществ (в 1,4 раза) по отношению к исходному торфу.
Также наблюдается улучшение сорбционных свойств по отношению к ионам меди (II). Для образцов торфа с разной степенью диспергирования максимальная степень сорбции ионов меди (II) достигается при рН 4,6 и поддерживается практически без изменения до 7,2, максимум сорбции на исходном торфе приходится на интервал рН 6,2–6,4. Изотермы сорбции относятся к L-типу. В результате ультразвуковой кавитационной обработки сорбционная емкость торфа увеличивается в 2,1 раза. Лучшими сорбционными свойствами обладает образец торфа, подвергшейся обработке в течение 10 мин (СОЕ=1,65 ммоль/г).
Изучение кинетических зависимостей показали, что процесс сорбции на изучаемых сорбентах протекает достаточно быстро и практически заканчивается через 7 мин. Ультразвуковая кавитационная диспергация торфа приводит к увеличению константы скорости сорбции.
Показана возможность использования диспергированного торфа в качестве сорбента для доочистки сточных вод от ионов меди (II) гальванопроизводств, прошедших через доломитовый фильтр. Установлено, что для торфа, подвергшегося ультразвуковой кавитационной обработке в течение 10 мин, характерна более высокая степень извлечения. Содержание меди после сорбции снижается в 9,49 раза, остаточная концентрация составляет 0,01–0,03 мг/дм3.
Скачивания
Metrics
Литература
Лозинская Е.Ф., Митракова Т.Н., Жиляева Н.А. Изучение сорбционных свойств природных сорбентов по от-ношению к ионам меди (II) // Ученые записки. Электронный научный журнал Курского государственного уни-верситета. 2013. №3. [Электронный ресурс]. URL: http://scientific-notes.ru/pdf/032-025.pdf.
Смирнов А.Д. Сорбционная очистка воды. Л., 1982. 168 с.
Щуклин П.В., Ромахина Е.Ю. Анализ основных направлений очистки производственных сточных вод от ионов тяжелых металлов // Вестник ПГТУ. Урбанистика. 2011. №3. С. 108–119.
Наумова Л.Б., Горленко Н.П., Казарин А.И. Обменные катионы и их влияние на гидрофильность торфа // Хи-мия растительного сырья. 2003. №3. С. 51–56.
Дементьева Т.В., Богданова О.Ю., Шинкеева Н.А. Физикохимия и биология торфа. Руководство по методам изучения трансформации органического вещества торфов: методическое пособие. Томск, 2011. 68 с.
Патент 2533235 (РФ). Способ получения биогеля и биогель / О.В. Володина, А.В. Смородько. 07.08.2014.
ПНД Ф 14.1:2.48-96. Количественный химический анализ вод. Методика выполнения измерений массовых кон-центраций ионов меди в природных и сточных водах фотометрическим методом с диэтилдитиокарбаматом свинца. М., 2004. 11 с.
Марков В.Ф., Формазюк Н.И., Маскаева Л.Н., Макурин Ю.Н., Степановских Е.И. Извлечение меди (II) из промывных вод композиционным сорбентом Dowex Marathon C – гидроксид железа // Конденсированные сре-ды и межфазные границы. 2006. Т. 8, №1. С. 29–35.
Котов В.В., Ненахов Д.В., Гасанова Е.С., Стекольников К.Е. Состав и кислотно-основные свойства фракций фульвокислот чернозема выщелоченного // Сорбционные и хроматографические процессы. 2010. Т. 10, вып. 1. С. 47–53.
Данченко Н.Н. Функциональный состав гумусовых кислот: определение и взаимосвязь с реакционной способ-ностью : дисс. ... канд. хим. наук. М., 1997. 137 c.
Джайлс Ч. Адсорбция из растворов на поверхности твердых тел. М., 1986. 488 с.
Соколова Т.А., Трофимов С.Я. Сорбционные свойств почв. Адсорбция. Катионный обмен: учебное пособие по некоторым главам химии почв. Тула, 2009. 172 с.
Cheung W.H., Ng J.C.Y., McKay G. Kinetic analysis of the sorption of copper (II) ions on chitosan // J. Chem. Techol. Biotechol. 2003. Vol. 78, N5. Pp. 562–571.
Варфоломеев А.А., Космачевская Н.П., Синегибская А.Д., Ершов А.А., Русина О.Б., Донская Т.А., Изучение сорбционных свойств верхового торфа Братского района по отношению к d-металлам // Системы. Методы. Тех-нологии. 2010. №6. С. 132–135.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями:
1. Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале.
2. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале.
3. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу.