ЦЕЛЛЮЛОЗНЫЕ МАТЕРИАЛЫ, МОДИФИЦИРОВАННЫЕ НАНОЧАСТИЦАМИ СЕРЕБРА, И ИЗУЧЕНИЕ ИХ АНТИБАКТЕРИАЛЬНЫХ СВОЙСТВ
УДК 677.027.62
Аннотация
В статье рассматривается метод получения наночастиц (НЧ) серебра в водных растворах путем восстановления боргидридом натрия в присутствии поливинилового спирта; подобраны оптимальные условия синтеза. Образующиеся НЧ серебра имеют сферическую форму, диаметром от 30 до 130 нм. НЧ стабильны, не осаждаются и не меняют окраску в течение 3–4 недель. Электронно-микроскопические снимки подтверждают образование тонкой полимерной пленки на поверхности целлюлозного волокна и показывают изменение морфологической поверхности обработанных образцов по сравнению с необработанными. Данные энергодисперсионного микроанализа показали, что необработанная хлопковая ткань содержит C – 57.02%, O – 42.98%. После обработки на поверхности ткани инкапсулируются наноразмерные частицы серебра – 0.18–0.28%, которые распределены достаточно неравномерно. Модификация целлюлозных текстильных материалов НЧ серебра придает устойчивый антимикробный эффект, а также улучшает их физико-механические и гигиенические свойства. Показатели воздухопроницаемости для хлопчатобумажной исходной ткани – 180 дм3/м2×сек., для обработанной составом на основе поливинилового спирта, NaBH4, и нитрата серебра – 175 дм3/м2×сек. Разрывная нагрузка ткани составляет: для исходной – 311 Н, для аппретированной – в пределах 320–360 Н. Показатели воздухопроницаемости и прочностные характеристики хлопчатобумажной ткани, обработанной предлагаемой композицией, соответствуют нормативным требованиям для данной группы тканей.
Скачивания
Metrics
Литература
Abdelghany T.M., Al-Rajhi A.M.H., Al Abboud M.A., Alawlaqi M.M., Magdah A.G., Helmy E.A.M., Mabrouk A.S. BioNanoScience, 2018, vol. 8, pp. 5–16. DOI: 10.1007/s12668-017-0413-3.
Siddiqi K.S., Husen A., Rao R.A.K. J. Nanobiotechnol., 2018, vol. 16, article 14. DOI: 10.1186/s12951-018-0334-5.
Chung I.M., Park I., Seung-Hyun K., Thiruvengadam M., Rajakumar G. Nanoscale Res Lett., 2016, vol. 11, article 40. DOI: 10.1186/s11671-016-1257-4.
Deshmukh S.P., PatiL S.M., Mullani S.B., Delekar S. D. Materials Science and Engineering: C, 2019, vol. 97, pp. 954–965. DOI: 10.1016/j.msec.2018.12.102.
Rajeshkumar S., Bharath L.V. Chemico-Biological Interactions, 2017, vol. 273, pp. 219–227. DOI: 10.1016/j.cbi.2017.06.019.
Sundar S., Kumar D., Kumar N., Nicolette R., Houreld N., Abrahamse H. International Journal of Biological Macro-molecules, 2018, vol. 115, pp. 165–175. DOI: 10.1016/j.ijbiomac.2018.04.003.
Koduru J.R., Kailasa S.K., Bhamore J.R., Kimc K.H., Duttac T., Vellingiric K. Advances in Colloid and Interface Sci-ence, 2018, vol. 256, pp. 326–339. DOI: 10.1016/j.cis.2018.03.001.
Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G.,Galdiero M. Molecules, 2015, vol. 20, pp. 8856–8874. DOI: 10.3390/molecules20058856.
Yuan Y.G., Peng Q.L., Gurunathan S. Int. J. Mol. Sci., 2017, vol. 18, p. 569. DOI: 10.3390/ijms18030569.
Krutyakov Yu.A., Kudrinskiy A.A., Olenin A.Yu., Lisichkin G.V. Uspekhi khimii, 2008, vol. 77, no. 3, pp. 243–269. (in Russ.).
Perni S., Hakala V., Prokopovich P. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, vol. 460, pp. 219–224. DOI: 10.1016/j.colsurfa.2013.09.034.
Zhao X., Xia Y., Li Q., Ma X., Quan F., Geng C., Han Z. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014, vol. 444, pp. 180–188. DOI: 10.1016/j.colsurfa.2013.12.008.
Zahran M.K., Ahmed H.B., El-Rafie M.H. Carbohydrate Polymers, 2014, vol. 111, pp. 971–978. DOI: 10.1016/j.carbpol.2014.05.028.
Zain N.M., Stapley A.G.F., Shama G. Carbohydrate Polymers, 2014, vol. 112, pp. 195–202. DOI: 10.1016/j.carbpol.2014.05.081.
Rac-Rumijowska O., Fiedot M.,Karbownik I., Suchorska-Woz´niak P., Teterycz H. Cellulose, 2017, vol. 24, pp. 1355–1370. DOI: 10.1007/s10570-016-1168-7.
Lakshmanan A., Chakraborty S. Cellulose, 2017, vol. 24, pp. 1563–1577. DOI: 10.1007/s10570-017-1204-2.
Irfan M., Perero S., Miola M., Maina G., Ferri A., Ferraris M., Balagna C. Cellulose, 2017, vol. 24, pp. 2331–2345. DOI: 10.1007/s10570-017-1232-y.
Li R., He M., Li T., Zhang L. Carbohydrate Polymers, 2015, vol. 115, pp. 269–275. DOI: 10.1016/j.carbpol.2014.08.046.
Burkitbay A., Taussarova B.R., Kutzhanova A.Z., Rakhimova S.M. Fibers & Textiles in Eastern Europe, 2014, vol. 22, no. 2(104), pp. 96-101.
Fu L.H., Gao Q.L., Qi C., Ma M.G., Li J.F. Nanomaterials, 2018, vol. 8(12), article 978. DOI: 10.3390/nano8120978.
Zhang X., Sun H., Tan S., Gao J., FuY., Liu Z. Inorganic Chemistry Communications, 2019, vol. 100, pp. 44–50. DOI: 10.1016/j.inoche.2018.12.012.
Guibala E., Cambe S., Bayle S., Taulemesse J., Vincent T. Journal of Colloid and Interface Science, 2013, vol. 393, pp. 411–420. DOI: 10.1016/j.jcis.2012.10.057.
Xu Q.B., Wu Y.H., Zhang Y.Y., Fu F.Y., Liu X.D. Fibers and Polymers, 2016, vol. 17, pp. 1782–1789. DOI: 10.1007/s12221-016-6609-2.
Xu Q.B., ZhengW.S., Duan P.P., Chen J.N., Zhang Y.Y., Fu F.Y., Diao H.Y., Liu X.D. Carbohydrate Polymers, 2019, vol. 204, pp. 42–49. DOI: 10.1016/j.carbpol.2018.09.089.
Xu Q.B., Xie L.J., Diao H.Y., Li F., Zhang Y.Y., Fu F.Y., Liu X.D. Carbohydrate Polymers, 2017, vol. 177, pp. 187–193. DOI: 10.1016/j.carbpol.2017.08.129.
Xu Q. B., Gu J.Y, Zhao Y., Ke X.T., Liu X.D. Fibers and Polymers, 2017, vol. 18, pp. 2204–2211. DOI: 10.1007/s12221-017-7567.
Xu Q.B., Ke X.T., Cai D.R., Zhang Y.Y., Fu F.Y., Endo T., Liu X.D. Cellulose, 2018, vol. 25, pp. 2129–2141. DOI: 10.1007/s10570-018-1689-3.
Rehan M., Barhoum A., Assche G.V., Dufresne A., Gätjen L.,Wilken R. International Journal of Biological Macro-molecules, 2017, vol. 98, pp. 877–886. DOI: 10.1016/j.ijbiomac.2017.02.058.
Hassabo A.G., El-Naggar M.E., Mohamed A.L., Hebeish A.A. Carbohydrate Polymers, 2019, vol. 210, pp. 144–156. DOI: 10.1016/j.carbpol.2019.01.066.
Hebeish A., El-Bisi M.K., El-Shafei A. International Journal of Biological Macromolecules, 2015, vol. 72, pp. 1384–1390. DOI: 10.1016/j.ijbiomac.2014.10.028.
Shaheen T.I., Abd El Aty A.A. International Journal of Biological Macromolecules, 2018, vol. 118, pp. 2121–2130. DOI: 10.1016/j.ijbiomac.2018.07.062.
Ibrahim H.M.M., Hassan M.S. Carbohydrate Polymers, 2016, vol. 151, pp. 841–850. DOI: 10.1016/j.carbpol.2016.05.041.
Patent 31290 (KZ). 2016. (in Russ.).
Pencheva D., Bryaskova R., Kantardjiev T. Materials Science and Engineering: C, 2012, vol. 32, pp. 2048–2051. DOI: 10.1016/j.msec.2012.05.016.
Chandran S., Ravichandran V., Chandran S., Chemmanda J., Chandarshekar B. Journal of Applied Research and Tech-nology, 2016, vol. 14, pp. 319–324. DOI: 10.1016/j.jart.2016.07.001.
Seku K., Gangapuram B.R., Pejjai B., Kadimpati K.K., Golla N. Journal of Nanostructure in Chemistry, 2018, vol. 8, pp. 179–188. DOI: 10.1007/s40097-018-0264-7.
Copyright (c) 2020 Химия растительного сырья
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Авторы, которые публикуются в данном журнале, соглашаются со следующими условиями:
1. Авторы сохраняют за собой авторские права на работу и передают журналу право первой публикации вместе с работой, одновременно лицензируя ее на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным указанием авторства данной работы и ссылкой на оригинальную публикацию в этом журнале.
2. Авторы сохраняют право заключать отдельные, дополнительные контрактные соглашения на неэксклюзивное распространение версии работы, опубликованной этим журналом (например, разместить ее в университетском хранилище или опубликовать ее в книге), со ссылкой на оригинальную публикацию в этом журнале.
3. Авторам разрешается размещать их работу в сети Интернет (например, в университетском хранилище или на их персональном веб-сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению, а также к большему количеству ссылок на данную опубликованную работу.