PROCESSING OF SUNFLOWER HUSK BY OXIDATIVE TORREFACTION

UDC 62-664.2

  • Svetlana Ivanovna Islamova Institute of Energy and Advanced Technologies FRC KazSC RAS Email: isvetulia@mail.ru
  • Aleksey Borisovich Dobrynin Institute of Organic and Physical Chemistry A.A. Arbuzov FRC KazSC RAS; Kazan National Research Technical University named after V.I. A.N. Tupolev Email: aldo@iopc.ru
Keywords: biomass, sunflower husk pellets, oxidative torrefaction, kaolin, thermal properties, morphology, mass yield, water absorption

Abstract

The paper presents for the first time an experimental study of the processing of sunflower husk pellets by oxidative torrefaction inside a kaolin chamotte layer. The process temperature was 280 °C, which contributed to significant changes in the chemical composition, thermal properties and morphology of plant biomass. Kaolin chamotte was used to limit the supply of oxygen to sunflower husk and suppress oxidation reactions and didn’t have a catalytic effect on the biomass destruction process. Torrefaction time and layer height of kaolin chamotte varied in the range of 30-60 min and 3-5 cm, respectively. As a result of oxidative torrefaction, a decrease in the amount of volatiles in sunflower husk was obtained, as well as an increase in ash content and fixed carbon. Comparison of the atomic ratios H/C and O/C before and after torrefaction showed that the elemental composition of sunflower husk shifted toward peat. The maximum value of the heat of combustion (22 MJ/kg) was obtained for the sample torrefied at 60 min and 4 cm. The diffusion mode of torrefaction was carried out at the investigated temperature, and the process time had the greatest influence on the change in the mass yield. It was found that during oxidative torrefaction kaolin chamotte effectively reduced the diffusion of oxygen into the biomass and suppressed the oxidation reactions. The obtained torrefied sunflower husk were characterized by improved fuel properties, which can positively affect the speed and efficiency of their subsequent thermochemical conversion.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Svetlana Ivanovna Islamova, Institute of Energy and Advanced Technologies FRC KazSC RAS

кандидат технических наук, научный сотрудник лаборатории энергетических систем и технологий

Aleksey Borisovich Dobrynin, Institute of Organic and Physical Chemistry A.A. Arbuzov FRC KazSC RAS; Kazan National Research Technical University named after V.I. A.N. Tupolev

кандидат химических наук, научный сотрудник лаборатории дифракционных методов исследований, доцент кафедры конструирования и технологии производства электронных средств

References

Khar'kov V.V., Tuntsev D.V., Kuznetsov M.G. Vestnik Kazanskogo GAU, 2018, no. 4(51), pp. 130–134. (in Russ.).

Tuntsev D.V., Khar'kov V.V., Kuznetsov M.G. Vestnik Kazanskogo GAU, 2019, no. 4(56), pp. 86–90. (in Russ.).

Timerbayev N.F., Safin R.G., Ziatdinova D.F., Khabibullina A.R. Vestnik kazanskogo gosudarstvennogo energetich-eskogo universiteta, 2019, no. 4, pp. 76–86. (in Russ.).

Spirchez C., Lunguleasa A., Croitoru C. E3S Web of Conferences, 2019, vol. 80, 01001. DOI: 10.1051/e3sconf/20198001001.

Sklyarenko Y., Vorobiov L. Path of Science, 2019, vol. 5, no. 3, pp. 3001–3010.

Wystalska K. E3S Web of Conferences, 2018, vol. 44, 00197. DOI: 10.1051/e3sconf/20184400197.

Isemin R., Mikhalev A., Klimov D., Grammelis P., Margaritis N., Kourkoumpas D.-S., Zaichenko V. Fuel, 2017, vol. 210, pp. 859–865. DOI: 10.1016/j.fuel.2017.09.032.

Kienz N., Margaritis N., Isemin R., Zaychenko V., Strasser C., Kourkoumpas D.-S., Grammelis P., Klimov D., Larina O., Sytchev G., Mikhalev A. Waste and Biomass Valorization, 2021, vol. 12, pp. 2579–2596. DOI: 10.1007/s12649-020-01170-7.

Bilgic E., Yaman S., Haykiri-Acma H., Kucukbayrak S. Fuel Processing Technology, 2016, vol. 144, pp. 197–202. DOI: 10.1016/j.fuproc.2016.01.006.

Demey Н., Melkior T., Chatroux A., Grateau M., Thiery S., Marchand M. Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. Springer Nature, 2020, 271. DOI: 10.1007/978-3-030-51210-1_271.

Zaichenko V.M., Krylova A.Yu., Sytchev G.A., Shevchenko A.L. Solid Fuel Chemistry, 2020, vol. 54, no. 4, pp. 228–231. DOI: 10.3103/S0361521920040084.

Korshunov A., Kichatov B., Sudakov V., Kolobov A., Gubernov V., Kiverin A. Energy Fuels, 2020, vol. 34, pp. 4660–4669. DOI: 10.1021/acs.energyfuels.9b04478.

Isemin R.L., Klimov D.V., Mikhalev A.V., Muratova N., Nebivaev A. Chemical engineering transations, 2020, vol. 82, pp. 331–336. DOI: 10.3303/CET2082056.

Leontiev A., Kichatov B., Korshunov A., Kiverin A., Zaichenko V., Sytchev G., Melnikova K. Fuel Processing Tech-nology, 2018, vol. 182, pp. 113–122. DOI: 10.1016/j.fuproc.2018.10.021.

Gandidi I.M., Susila M.D., Rustamaji H. IOP Conference Series: Earth and Environmental Science, 2018, vol. 160, 012018. DOI:10.1088/1755-1315/160/1/012018.

Maksimuk Yu.V., Kruk V.S., Antonova Z.A., Ponomarev D.A., Sushkova A.V. Lesnoy zhurnal, 2016, no. 6, pp. 110–121. DOI: 10.17238/issn0536-1036.2016.6.110. (in Russ.).

Basu P. Biomass Gasification, Pyrolysis and Torrefaction. Academic Press, 2018, 564 p. DOI: 10.1016/C2016-0-04056-1.

Pattanayak S., Hauchhum L., Loha Ch., Sailo L. Biomass Conversion and Biorefinery, 2020, vol. 10, pp. 401–407. DOI: 10.1007/s13399-019-00421-5.

Sukarni S. Proceedings of the International Mechanical Engineering and Engineering Education Conferences, 2016, vol. 1778, pp. 020003-1–020003-7. DOI: 10.1063/1.4965733.

Singh S., Chakraborty J.P., Mondal M.K. Renewable Energy, 2020, vol. 153, pp. 711–724. DOI: 10.1016/j.renene.2020.02.037.

Aslam U., Ramzan N., Aslam Z., Iqbal T., Sharif S., Waheed ul Hasan S., Malik A. Waste Management & Research, 2019, vol. 37, pp. 737–745. DOI: 10.1177/0734242X19838620.

Published
2022-03-10
How to Cite
1. Islamova S. I., Dobrynin A. B. PROCESSING OF SUNFLOWER HUSK BY OXIDATIVE TORREFACTION // chemistry of plant raw material, 2022. № 1. P. 325-334. URL: http://journal.asu.ru/cw/article/view/10226.
Section
Technology