HETEROGENEOUS CATALYTIC FRACTIONATION OF BIRCH-WOOD BIOMASS INTO MICROCRYSTALLINE CELLULOSE, XYLOSE AND ENTEROSORBENTS

UDC 676.1.022.6.001.5

  • Boris Nikolayevich Kuznetsov Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS Email: bnk@icct.ru
  • Natal'ya Viktorovna Garyntseva Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS Email: garyntseva@icct.ru
  • Irina Gennad'yevna Sudakova Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS Email: sudakova_irina@mail.ru
  • Andrey Mikhaylovich Skripnikov Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University Email: and-skripnikov@yandex.ru
  • Andrey Vladimirovich Pestunov Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS Email: gamlet115@gmail.com
Keywords: birch wood, hydrolysis, peroxide delignification, catalysts, Amberlyst® 15, TiO2, microcrystalline cellulose, xylose, enterosorbents

Abstract

For the first time, it was proposed to fractionate the main components of birch wood into microcrystalline cellulose, xylose and enterosorbents by integrating heterogeneous catalytic processes of acid hydrolysis and peroxide delignification of wood biomass. The hydrolysis of wood hemicelluloses into xylose is carried out at a temperature of 150 °C in the presence of a solid acid catalyst Amberlyst® 15. Then the lignocellulosic product undergoes peroxide delignification in a "formic acid – water" medium in the presence of a solid TiO2 catalyst to obtain microcrystalline cellulose (MCC) and soluble lignin. Under the determined optimal conditions (100 °С, Н2О2 – 7.2 wt.%, НСООН – 37.8 wt.%, LWR 15, time 4 h), the yield of MCC reaches 64.5 wt.% and of organosolvent lignin 11.5 wt% from the weight of prehydrolyzed wood. By the treatment of organosolvent lignin with a solution of 0.4% NaHCO3 or hot water the enterosorbents were obtained, whose sorption capacity for methylene blue (97.7 mg/g) and gelatin (236.7 mg/g) is significantly higher than that of the commercial enterosorbent Polyphepan (44 mg/g and 115 mg/g, respectively). The products of catalytic fractionation of birch wood are characterized by physicochemical (FTIR, XRD, SEM, GC) and chemical methods.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Boris Nikolayevich Kuznetsov, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS

заведующий лабораторией «Химия природного органического сырья», доктор химических наук, профессор

Natal'ya Viktorovna Garyntseva, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS

научный сотрудник, кандидат химических наук

Irina Gennad'yevna Sudakova, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS

старший научный сотрудник, кандидат технических наук

Andrey Mikhaylovich Skripnikov, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS; Siberian Federal University

младший научный сотрудник, ассистент

Andrey Vladimirovich Pestunov, Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS

аспирант

References

Cherubini F. Energy Conversion and Management, 2010, vol. 51, pp. 1412–1421. DOI: 10.1016/j.enconman.2010.01.015.

Bajpai P. Biorefinery in the pulp and paper industry. Elsevier, 2013, 114 p. DOI: 10.1016/C2012-0-06724-5.

Environmentally Friendly Technologies for the Pulp and Paper Industry. Ed. Raymond A. Young and Masood Akhtar. John Wiley&Sons, Inc. 1998. 577 p.

Ferrer A., Vega A., Rodriguez A., Ligero P., Jimenez L. Bioresource Technology, 2011, vol. 102, pp. 9755–9762.

Garyntseva N.V., Sudakova I.G., Chudina A.I., Malyar Yu.N., Kuznetsov B.N. J. Sib. Fed. Univ. Chem., 2019, vol. 12, no. 4, pp. 522–535. DOI: 10.17516/1998-2836-0148. (in Russ.).

Kuznetsov B.N., Malyar Yu.N., Kuznetsova S.A., Grishechko L.I., Kazachenko A.S., Levdansky A.V., Pestunov A.V., Boyandin A.N., Celzard A. J. Sib. Fed. Univ. Chem., 2016, vol. 9, no. 4, pp. 454–482. DOI: 10.17516/1998-2836-2016-9-4-454-482. (in Russ.).

Liu X., Feng Sh., Fang Q., Jiang Zh., Hu Ch. Molecular Catalysis, 2020, vol. 495. 111164. DOI: 10.1016/j.mcat.2020.111164.

Kazachenko A.S., Baryshnikov S.V., Chudina A.I., Malyar YU.N., Sychev V.V., Taran O.P., D'yakovich L., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2019, no. 2, pp. 15–26. DOI: 10.14258/jcprm.2019025108. (in Russ.).

Dussan K., Girisuta B., Haverty D., Leahya J.J., Hayes M.H.B. Carbohydrate Polymers, 2014, vol. 111, pp. 374–384. DOI: 10.1016/j.carbpol.2014.04.039.

Ma R., Xu Y., Zhang X. ChemSusChem, 2015, vol. 8, pp. 24–51. DOI: 10.1002/cssc.201402503.

Ramadoss G., Muthukumar K. Chem. Eng. J., 2015, vol. 260, pp. 178–187. DOI: 10.1016/j.cej.2014.08.006.

Kuznetsov B.N., Sudakova I.G., Garyntseva N.V., Levdansky V.A., Ivanchenko N.M., Pestunov A.V., Djakovitch L., Pinel C. Wood Science and Technology, 2018, vol. 52, pp. 1377–1394. DOI: 10.1007/s00226-018-1029-7.

Borrega M., Nieminen K., Sixta H. BioResources, 2011, vol. 6, no. 2, pp. 1890–1903.

Sjöström E., Alern R. Analytical Methods of Wood Chemistry. Pulping and Papermaking, Springer-Verlag, 1999. 318 p.

Vilcocq L., Castilho P., Carvalheiro F., Duarte L. ChemSusChem., 2014, vol. 7, Pp. 1010–1019. DOI: 10.1002/cssc.201300720.

Hu L., Lin L., Wu Z., Zhou S., Liu S. Applied Catalysis B: Environmental, 2015, vol. 174–175, pp. 225–243.

Sudakova I.G., Garyntseva N.V., Chudina A.I., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2018, no. 4, pp. 63–71. DOI: 10.14258/jcprm.2018044079. (in Russ.).

Reshetnikov V.I. Pharmaceutical Chemistry Journal, 2003, vol. 37, no. 5, pp. 246–251.

Ruiz-Matute A.I., Hernandez-Hernandez O., Rodriguez-Sanchez S., Sanz M.L., Martinez-Castro I. J. Chromatogr. B., 2011, vol. 879, pp. 1226–1240. DOI: 10.1016/j.jchromb.2010.11.013.

Testova L., Vilonen K.M., Pynnönen H., Tenkanen M. Lenzinger Berichte, 2009, vol. 87, pp. 58–65.

Degirmenci V, Uner D, Cinlar B et al. Catalysis Letters, 2011, vol. 141, pp. 33–42. DOI: 10.1007/s10562-010-0466-1.

Wu C., Bing L., Li S., Yu D., Wang D. BioResources, 2016, vol. 11, no. 1, pp. 87–94. DOI: 10.15376/biores.11.1.87-94.

Nakajima K., Okamura M., Kondo, et al. Chem. Mater., 2009, vol. 21, pp. 186–193. DOI: 10.1021/cm801441c.

Kuznetsov B.N., Yatsenkova O.V., Chudina A.I., Skripnikov A.M., Kozlova S.A., Garyntseva N.V., Chesnokov N.V. J. Sib. Fed. Univ. Chem. 2014, vol. 7, no. 1, pp. 122–133. (in Russ.).

Yatsenkova O.V., Chudina A.I., Skripnikov A.M., Chesnokov N.V., Kuznetsov B.N. J. Sib. Fed. Univ. Chem., 2015, vol. 8, no. 2, pp. 211–221. DOI: 10.17516/1998-2836-2015-8-2-211-221. (in Russ.).

Kuznetsov B.N., Sudakova I.G., Garyntseva N.V., Tarabanko V.E., Yatsenkova O.V., Djakovitch L., Rataboul F. Catal-ysis Today, 2021, vol. 375, pp. 132–144. DOI: 10.1016/j.cattod.2020.05.044.

NIST/SEMATECH e-Handbook of Statistical Methods. URL: http://www.itl.nist.gov/div898/handbook/. DOI: 10.18434/M32189.

Pen R.Z. Planirovaniye eksperimenta v Statgraphics. [Planning an experiment in Statgraphics]. Krasnoyarsk, 2012, 270 p. (in Russ.).

Adel A.M., Abd El-Wahab Z.H., Ibrahim A.A., Al-Shemy M.T. Carbohydrate Polymers, 2001, vol. 83, no. 2, pp. 676–687. DOI: 10.1016/j.carbpol.2010.08.039.

Fan M., Dai D., Huang B. International Conference on Innovative Technologies (IN-TECH 2012), Rejeka, Croatia, 2012, pp. 45–68.

Nishiyama Y, Langan P, Chanzy H. J. Am. Chem. Soc., 2002, vol. 124, pp. 9074–9082. DOI: 10.1021/ja0257319.

Park S., Baker J.O., Himmel M.E., Parilla P.A., Jonson D.K. Biotechnol Biofuels., 2010, vol. 3. 10. DOI: 10.1186/1754-6834-3-10.

Garyntseva N.V., Sudakova I.G., Kuznetsov B.N. J. Sib. Fed. Univ. Chem., 2011, vol. 4, no. 2, pp. 121–126. (in Russ.).

Published
2021-12-14
How to Cite
1. Kuznetsov B. N., Garyntseva N. V., Sudakova I. G., Skripnikov A. M., Pestunov A. V. HETEROGENEOUS CATALYTIC FRACTIONATION OF BIRCH-WOOD BIOMASS INTO MICROCRYSTALLINE CELLULOSE, XYLOSE AND ENTEROSORBENTS // chemistry of plant raw material, 2021. № 4. P. 105-118. URL: http://journal.asu.ru/cw/article/view/10504.
Section
Biopolymers of plants