COMPARATIVE CHARACTERISTICS OF SOME PLANTS FAMILY HEATHER EXTRACTS AND THE EFFECTIVENESS OF METHODS FOR THEIR PRODUCTION

UDC 582.912.46:582.912.48: 543.42

  • Valeriya Igorevna Matveeva Russian State University, A.N. Kosygin (Technology. Design. Art) Email: occd@mail.ru
  • Anna Gennadʹyevna Ruchkina Russian State University, A.N. Kosygin (Technology. Design. Art) Email: occd@mail.ru
  • Konstantin Ivanovich Kobrakov Russian State University, A.N. Kosygin (Technology. Design. Art) Email: occd@mail.ru
  • Liliya Konstantinovna Shpigun Institute of General and Inorganic Chemistry N.S. Kurnakova Russian Academy of Sciences Email: shpigun@igic.ras.ru
  • Nataliya Sergeyevna Shmakova Technopark Slava JSC Email: shmakova@technopark-slava.ru
Keywords: plant extract, ultrasonic extraction, highbush blueberry leaves, particle size distribution, eneral antioxidant activity

Abstract

The paper presents new data related to the comparative study of water-alcohol leaf extracts of the heather plants family (highbush blueberry, lingonberry, heather). Leaf extracts were obtained by three methods, two of which were using ultrasonic emitters (an ultrasound bath and a submersible ultrasonic probe), the third method, thermal (traditional), was chosen as a comparison. The extracts are characterized by parameters as the total content of extractive substances, the sum of phenolic compounds, flavonoids, the dispersed phase size particles distribution determined by the method of dynamic light scattering, and a quantitative assessment of the integral antioxidant activity is given. It has been established that ultrasonic probing has a highest activity in extracting phenolic compounds and flavonoids from lingonberry leaves and heather grass, and at the same time the level of their antioxidant activity is inferior to the extracts obtained by the traditional method at which the plant raw materials is boiled with the extractant. The traditional thermal method is characterized by the highest values of the sum of extractives for all types of raw materials and average values for the sum of phenolic compounds and flavonoids. There are observed a significant increase in the content of particles with the size <1000 nm for "ultrasonic" lingonberry leaf extracts is compared to the traditional method, however this pattern is not fulfilled for other types of raw materials. All heather herb extracts have a high polydispersity and the greatest tendency to sediment formation during the storage.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Valeriya Igorevna Matveeva, Russian State University, A.N. Kosygin (Technology. Design. Art)

магистрант

Anna Gennadʹyevna Ruchkina, Russian State University, A.N. Kosygin (Technology. Design. Art)

кандидат химических наук, доцент, доцент кафедры органической химии

Konstantin Ivanovich Kobrakov, Russian State University, A.N. Kosygin (Technology. Design. Art)

доктор химических наук, профессор, заведующий кафедрой органической химии

Liliya Konstantinovna Shpigun, Institute of General and Inorganic Chemistry N.S. Kurnakova Russian Academy of Sciences

доктор химических наук, профессор, главный научный сотрудник

Nataliya Sergeyevna Shmakova, Technopark Slava JSC

кандидат технических наук, заместитель руководителя ТЦКП

References

Azwanida N.N. Med. Aromat. Plants, 2015, vol. 4, 196. DOI: 10.4172/2167-0412.1000196.

Danlami J.M., Arsad A., Zaini M.A.A., Sulaiman H. Rev. Chem. Eng., 2014, vol. 30(6), pp. 605–626. DOI: 10.1515/revce-2013-0038.

İnce A.E., Şahin S., Şümnü S.G. Turkish Journal of Agriculture and Forestry, 2013, vol. 37, pp. 69–75. DOI: 10.3906/tar-1201-1.

Han H., Wang S., Rakita M., Wang Y., Han Q., Xu Q. Food and Nutrition Sciences, 2018, vol. 9, pp. 1034–1045. DOI: 10.4236/fns.2018.98076.

Jovanović A.A., Đorđević V.B., Zdunić G.M., Pljevljakušić D.S., Šavikin K.P., Gođevac D.M., Bugarski B.M. Sep. Purif. Technol., 2017, vol. 179, pp. 369–380. DOI: 10.1016/j.seppur.2017.01.055.

Bremner D., Burgess A., Chand R. Current Organic Chemistry, 2011, vol. 15, pp. 168–177. DOI: 10.2174/138527211793979862.

Ma Y.-Q., Ye X.-Q., Fang Z.-X., Chen J.-C., Xu G.-H., Liu D.-H. Journal of Agricultural and Food Chemistry, 2008, vol. 56 (14), pp. 5682–5690. DOI: 10.1021/jf072474o.

Setyaningsih W., Saputro I.E., Palma M., Barroso C.G. AIP Conf. Proc., 2016, vol. 1755, 080009. DOI: 10.1063/1.4958517.

Patil S., Torres B., Tiwari B.K., Wijngaard H.H., Bourke P., Cullen P.J., O’Donnell C.P., Valdramidis V.P. J. Food Sci., 2010, vol. 75, pp. 437–443. DOI: 10.1111/j.1750-3841.2010.01750.x.

Sun Y., Qiao L., Ye X., Liu D., Zhang X., Huang H. Molecules, 2013, vol. 18(1), pp. 561–573. DOI: 10.3390/molecules18010561.

Jamal M., Amir M., Ali Z., Mujeeb M. Future Journal of Pharmaceutical Sciences, 2018, vol. 4 (2), pp. 229–233. DOI: 10.1016/j.fjps.2018.07.002.

Traversier M., Gaslonde T., Lecso M., Michel S., Delannay E. International Journal of Cosmetic Science, 2020, vol. 42, pp. 127–135. DOI: 10.1111/ics.12595.

Ferlemi A.-V., Lamari F.N. Antioxidants, 2016, vol. 5, no. 2, p. 17. DOI: 10.3390/antiox5020017.

Zaprometov M.N. Osnovy biokhimii fenol'nykh soyedineniy. [Fundamentals of biochemistry of phenolic compounds]. Moscow, 1974, 214 p. (in Russ.).

Lee L.S., Lee N., Kim Y.H., Lee C.H., Hong S.P., Jeon Y.W., Kim Y.E. Molecules, 2013, vol. 18(11), pp. 13530–13545. DOI: 10.3390/molecules181113530.

Gosudarstvennaya farmakopeya RF. XIV izd. [State Pharmacopoeia of the Russian Federation. XIV ed.]. Moscow, 2018. URL: http://femb.ru/femb/pharmacopea.php. (in Russ.).

Patent 2475724 (RU). 20.02.2013. (in Russ.).

Shpigun L.K., Zamyatina N.N., Shushenachev Ya.V., Kamilova P.M. Zhurnal analiticheskoy khimii, 2012, vol. 67, no. 10, pp. 893–901. (in Russ.).

Huie C.W. Anal. Bioanal. Chem., 2002, vol. 373, pp. 23–30. DOI: 10.1007/s00216-002-1265-3.

Tarun Ye.I., Khrapovitskaya A.V., Shidlovskaya Ye.Yu., Kurchenko V.P. Ekologicheskiy vestnik, 2016, no. 1, pp. 35–39. (in Russ.).

Lazarev A.S., Klyauzova A.V., Ruchkina A.G., Kobrakov K.I., Shpigun L.K. Khimiya rastitel'nogo syr'ya, 2019, no. 4, pp. 223–232. DOI: 10.14258/jcprm.2019045498. (in Russ.).

Dai J., Mumper R.J. Molecules, 2010, vol. 15, pp. 7313–7352.

Solomatin A.A, Khaziyev R.Sh., Makarova A.S., Ivanova S.A. Teoreticheskiye osnovy khimicheskoy tekhnologii, 2015, vol. 49, no. 2, pp. 206–212. (in Russ.).

Bremner D., Burgess A. Chand R. Curr. Org. Chem., 2011, vol. 15, pp. 168–177.

Published
2022-06-10
How to Cite
1. Matveeva V. I., Ruchkina A. G., Kobrakov K. I., Shpigun L. K., Shmakova N. S. COMPARATIVE CHARACTERISTICS OF SOME PLANTS FAMILY HEATHER EXTRACTS AND THE EFFECTIVENESS OF METHODS FOR THEIR PRODUCTION // chemistry of plant raw material, 2022. № 2. P. 105-112. URL: http://journal.asu.ru/cw/article/view/10516.
Section
Low-molecular weight compounds