ABOUT THE POSSIBILITY OF QUANTITATIVE DETERMINATION OF LIGNIN AND CELLULOSE IN PLANT MA-TERIALS USING IR SPECTROSCOPY

UDC 543.42-035.2

  • Sergey Gennadievich Kostryukov National Research Mordovia State University http://orcid.org/0000-0002-1774-0836 Email: kostryukov_sg@mail.ru
  • Nikita Aleksandrovich Malov National Research Mordovia State University Email: nik.malov.2020@bk.ru
  • Yuliya Yur'yevna Masterova National Research Mordovia State University Email: masterova.yu@gmail.com
  • Khusain Bakhramovich Matyakubov National Research Mordovia State University Email: husin_518@mail.ru
  • Ivan Aleksandrovich Konushkin National Research Mordovia State University Email: konushkinivan71@gmail.com
  • Konstantin Viktorovich Savrasov National Research Mordovia State University Email: ksav@inbox.ru
  • Aleksandr Alekseyevich Pynenkov National Research Mordovia State University Email: alekspyn@yandex.ru
  • Natal'ya Aleksandrovna Khluchina National Research Mordovia State University Email: kostryukov_sg@mail.ru
Keywords: IR spectroscopy, absorption band, lignocellulosic biomass, lignin, cellulose, hemicellulose

Abstract

A methodical approach for quantitative determination of lignin and cellulose in plant materials by midinfrared FT-IR spectroscopy using the suspension method in tablets with KBr was proposed. For the prepared model binary mixtures of pure cellulose and lignin a direct correlation was achieved between the concentration and intensity of the analytical absorption bands of lignin (1508–1512 cm-1) and cellulose (1059–1061 cm-1). Based on the obtained intensity / concentration dependences formulas were derived that allow calculating the content of lignin and cellulose. The proposed method was tested on a wide range of plant biomass samples: 9 wood samples and 11 samples of agro-processing wastes. A good suitability of the proposed method for the quantitative determination of lignin was shown; the deviation from the literature data was no more than 1%. However, the proposed method was not suitable for the determination of cellulose since it didn't take into account the contribution of hemicellulose and extractive substances in the absorption band of 1059–1061 cm-1, which resulted in greatly overestimated results of cellulose content determination.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Sergey Gennadievich Kostryukov, National Research Mordovia State University

кандидат химических наук, доцент, заведующий кафедрой органической химии

Nikita Aleksandrovich Malov, National Research Mordovia State University

студент

Yuliya Yur'yevna Masterova, National Research Mordovia State University

кандидат химических наук, преподаватель

Khusain Bakhramovich Matyakubov, National Research Mordovia State University

аспирант

Ivan Aleksandrovich Konushkin, National Research Mordovia State University

студент

Konstantin Viktorovich Savrasov, National Research Mordovia State University

кандидат физико-математических наук, доцент

Aleksandr Alekseyevich Pynenkov, National Research Mordovia State University

младший научный сотрудник

Natal'ya Aleksandrovna Khluchina, National Research Mordovia State University

ведущий инженер

References

Moore A.K., Owen N.L. Applied Spectroscopy Reviews, 2001, vol. 36, no. 1, pp. 65–86. DOI: 10.1081/ASR-100103090.

Pozhidaev V.M., Sergeeva Y.E., Malakhov S.N., Yatsishina E.B. Journal of Analytical Chemistry, 2021, vol. 76, no. 5, pp. 573–577. DOI: 10.1134/S1061934821050142.

Zhao P., Li Z.-Y., Wang C.-K. Journal of Spectroscopy, 2021, 6088435. DOI: 10.1155/2021/6088435.

Traoré M., Kaal J., Martínez Cortizas A. Wood Science and Technology, 2018, vol. 52, no. 2, pp. 487–504. DOI: 10.1007/s00226-017-0967-9.

Ozgenc O., Durmaz S., Hakki Boyaci I., Eksi-Kocak H. Drewno, 2018, vol. 61, no. 201, pp. 91–105. DOI: 10.12841/wood.1644-3985.247.02.

Derkacheva O., Sukhov D. Macromolecular Symposia, 2008, vol. 265, no. 1, pp. 61–68. DOI: 10.1002/masy.200850507.

Traoré M., Kaal J., Martínez Cortizas A. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 2016, no. 153, pp. 63–70. DOI: 10.1016/j.saa.2015.07.108.

Fougere D., Nanda S., Clarke K., Kozinski J.A., Li K. Biomass and Bioenergy, 2016, no. 91, pp. 56–68. DOI: 10.1016/j.biombioe.2016.03.027.

Somerville C., Youngs H., Taylor C., Davis S.C., Long S.P. Science, 2010, vol. 329, no. 5993, pp. 790–792. DOI: 10.1126/science.1189268.

Wang H., Pu Y., Ragauskas A., Yang B. Bioresource Technology, 2018, vol. 217, pp. 449–461. DOI: 10.1016/j.biortech.2018.09.072.

Long H., Li X., Wang H., Jia J. Renewable and Sustainable Energy Reviews, 2013, no. 26, pp. 344–352. DOI: 10.1016/j.rser.2013.05.035.

Limayem A., Ricke S.C. Progress in Energy and Combustion Science, 2012, vol. 38, no. 4, pp. 449–467. DOI: 10.1016/j.pecs.2012.03.002.

Nanda S., Mohammad J., Reddy S.N., Kozinski J.A., Dalai A.K. Biomass Conversion and Biorefinery, 2013, vol. 4, no. 2, pp. 157–191. DOI: 10.1007/s13399-013-0097-z.

Volynets B., Ein-Mozaffari F., Dahman Y. Green Processing and Synthesis, 2017, vol. 6, no. 1, pp. 1–22. DOI: 10.1515/gps-2016-0017.

Vallejo M., Cordeiro R., Dias P.A.N., Moura C., Henriques M., Seabra I.J., Malça C.M., Morouço P. Bioresources and Bioprocessing, 2021, vol. 8, no. 1, 25. DOI: 10.1186/s40643-021-00377-3.

Spiridon I., Popa V.I. Monomers, Polymers and Composites from Renewable Resources. Elsevier, 2008, pp. 289–304. DOI: 10.1016/B978-0-08-045316-3.00013-2.

Qaseem M.F., Shaheen H., Wu A.-M. Renewable and Sustainable Energy Reviews, 2021, vol. 144, no. 7, 110996. DOI: 10.1016/j.rser.2021.110996.

Kabbour M., Luque R. Biomass, Biofuels, Biochemicals. Elsevier, 2020, pp. 283–297. DOI: 10.1016/B978-0-444-64307-0.00010-X.

Zobiole L.H.S., dos Santos W.D., Bonini E., Ferrarese-Filho O., Kremer R.J., de Oliveira R.S., Constantin J. Lignin: Properties and Applications in Biotechnology and Bioenergy. Nova Science, 2012, pp. 419–435.

Tian X., Fang Z., Smith R.L., Wu Z., Liu M. Production of Biofuels and Chemicals from Lignin. Springer, 2016, pp. 3–34. DOI: 10.1007/978-981-10-1965-4_1.

Kai D., Tan M.J., Chee P.L., Chua Y.K., Yap Y.L., Loh X.J. Green Chemistry, 2016, vol. 18, no. 5, pp. 1175–1200. DOI: 10.1039/c5gc02616d.

Wagle A., Angove M.J., Mahara A., Wagle A., Mainali B., Martins M., Goldbeck R., Raj Paudel S. Sustainable Ener-gy Technologies and Assessments, 2022, vol. 49, 101702. DOI: 10.1016/j.seta.2021.101702.

Garlapati V.K., Chandel A.K., Kumar S.P.J., Sharma S., Sevda S., Ingle A.P., Pant D. Renewable and Sustainable En-ergy Reviews, 2020, vol. 130, 109977. DOI: 10.1016/j.rser.2020.109977.

Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick Jr.W.J., Hallett J.P., Leak D.J., Liotta C.L., Mielenz J.R., Murphy R., Templer R., Tschaplinski T. Science, 2006, vol. 311, pp. 484–489. DOI: 10.1126/science.1114736.

T222 Om-02. Acid-insoluble lignin in wood and pulp. TAPPI Test Methods, 2006, 14 p.

Obolenskaya A.V., Elnitskaya Z.P., Leonovich A.A. Laboratornyye raboty po khimii drevesiny i tsellyulozy [Laborato-ry work on the chemistry of wood and cellulose]. Moscow, 1991, 320 p. (in Russ.).

Castillo R.P., Peña-Farfal C., Neira Y., Freer J. Fourier Transform Infrared Spectroscopy (FTIR): Methods, Analysis and Research Insights. Nova Science, 2016, pp. 33–66.

Karklin' V.B. Chemistry of Natural Compounds, 1981, vol. 17, no. 6, pp. 566–570. DOI: 10.1007/BF00574378.

Derkacheva O.Y., Tsypkin D.O. Journal of Applied Spectroscopy, 2018, vol. 84, no. 6, pp. 1066–1071. DOI: 10.1007/s10812-018-0588-6.

Afanas’ev N.I., Lichutina T.F., Gusakova M.A., Prokshin G.F., Vishnyakova A.P., Sukhov D.A., Derkacheva O.Y. Russian Journal of Applied Chemistry, 2006, vol. 79, no. 10, pp. 1686–1689. DOI: 10.1134/S1070427206100260.

Fiskari J., Derkacheva O., Kulomaa T., Sukhov D. Cellulose Chemistry and Technology, 2016, vol. 50, no. 2, pp. 213–217.

Derkacheva O.Y., Sukhov D.A., Fedorov A.V. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Khimiya, 2017, no 1, pp. 64–71. (in Russ.).

Fiskari J., Derkacheva O., Kulomaa T. Cellulose Chemistry and Technology, 2021, vol. 55, no. 3-4, pp. 263–270. DOI: 10.35812/CELLULOSECHEMTECHNOL.2021.55.26

Pandey K.K. Journal of Applied Polymer Science, 1999, vol. 71, no. 12, pp. 1969–1975. DOI: 10.1002/(sici)1097-4628(19990321)71:12<1969::aid-app6>3.0.co;2-d.

Xu F., Yu J., Tesso T., Dowell F., Wang D. Applied Energy, 2013, vol. 104, pp. 801–809. DOI: 10.1016/j.apenergy.2012.12.019.

Sills D.L., Gossett J.M. Biotechnology and Bioengineering, 2012, vol. 109, no. 2, pp. 353–362. DOI: 10.1002/bit.23314.

Raspolli Galletti A.M., D'Alessio A., Licursi D., Antonetti C., Valentini G., Galia A., Nassi O Di Nasso N. Journal of Spectroscopy, 2015, 719042. DOI: 10.1155/2015/719042.

Vârban R., Crișan I., Vârban D., Ona A., Olar L., Stoie A., Ștefan R. Applied Sciences, 2021, vol. 11, no. 18, 8570. DOI: 10.3390/app11188570.

Rammal A., Perrin E., Vrabie V., Bertrand I., Chabbert B. Journal of Chemometrics, 2017, vol. 31, no. 2, e2865. DOI: 10.1002/cem.2865.

Kostryukov S.G., Petrov P.S., Kalyazin V.A., Masterova Y.Y., Tezikova V.S., Khluchina N.A., Labzina L.Y., Alalvan D.K. Polymer Science – Series B, 2021, vol. 63, no. 5, pp. 544–552. DOI: 10.1134/S1560090421050067.

Kumar B., Bhardwaj N., Agrawal K., Chaturvedi V., Verma P. Fuel Processing Technology, 2020, vol. 199, 106244. DOI: 10.1016/j.fuproc.2019.106244.

Published
2022-09-26
How to Cite
1. Kostryukov S. G., Malov N. A., Masterova Y. Y., Matyakubov K. B., Konushkin I. A., Savrasov K. V., Pynenkov A. A., Khluchina N. A. ABOUT THE POSSIBILITY OF QUANTITATIVE DETERMINATION OF LIGNIN AND CELLULOSE IN PLANT MA-TERIALS USING IR SPECTROSCOPY // chemistry of plant raw material, 2022. № 3. P. 71-80. URL: http://journal.asu.ru/cw/article/view/10665.
Section
Biopolymers of plants