APPLICATION OF RICE PAD (ORYZA SATIVA) AS A SORPTION MATERIAL TO REMOVE POLLUTANTS FROM AQUATIC ENVIRONMENT
UDC 544.723
Abstract
The use of rice husk (the waste in the production of seeded rice (Oryza sativa) as a sorption material for the removal of pollutants of various classes – inorganic (Cr, Ni, Co, Pb, Hg, As, Cd, Cu, Zn) and organic substances (synthetic and natural dyes, phenols, antibiotics, polycyclic aromatic compounds, humic acids, pesticides, chitosan) from aqueous media is generalized. The literature data on the structure of seeded rice, the volume of its cultivation, the chemical composition, and some components of rice husk are given.
The methods of physical and chemical (the use of inorganic acids, salts, and alkalis) are described activation, as well as modification of rice husks using surfactants, Fe3O4 nanoparticles, functional agents, and monomers (polymerization reactions). Quantitative characteristics of the absorption of various pollutants (recoveries, equilibrium limit sorption) are given. The influence of pH, temperature, the concentration of pollutants, phase contact time, volume, and mass of rice husk on sorption and removal of pollutants from aqueous media is shown. Possible sorption mechanisms, kinetic and sorption models are described. It is revealed that the isotherms of the sorption of pollutants in most cases are most adequately described by Langmuir and Freundlich models, and the kinetics of the process is a pseudo-second-order model.
Downloads
Metrics
References
Ali I., Asim M., Khan T.A. Journal of Environmental Management, 2012, vol. 113, pp. 170–183. DOI: 10.1016/j.jenvman.2012.08.028.
Chuah T.G., Jumasiah A., Azni I., Katayon S., Thomas Choong S.Y. Desalination, 2005, vol. 175, no. 3, pp. 305–316. DOI: 10.1016/j.desal.2004.10.014.
Ngah W.S.W., Hanifah M.A.K.M. Bioresour. Technol., 2008, vol. 99, pp. 3935–3948. DOI: 10.1016/j.biortech.2007.06.011.
Sud D., Mahajan G., Kaur M.P. Bioresour. Technol., 2008, vol. 99, no. 14, pp. 6017–6027. DOI: 10.1016/j.biortech.2007.11.064.
Mane V.S., Mall I.D., Srivastava V.C. J. Environ. Manag., 2007, vol. 84, no. 4, pp. 390–400. DOI: 10.1016/j.jenvman.2006.06.024.
Lavanya C., Dhankar R., Chhikara S., Sheoran S. Int. J. Curr. Microbiol. App. Sci., 2014, vol. 3, no. 6, pp. 189–199.
Sukhanov P.T., Kushnir A.A. Moscow University Chemistry Bulletin, 2019, vol. 74, no. 2, pp. 88–92. DOI: 10.3103/S0027131419020081.
Kermani M., Pourmoghaddas H., Bina B., Khazaei Z. Pakistan J. Biol. Sci., 2006, vol. 9, pp. 1905–1910.
Deniz F. Materials Science and Engineering: C, 2013, vol. 33, no. 5, pp. 2821–2826. DOI: 10.1016/j.msec.2013.03.009.
Ferrero F. J. Hazard Mater., 2006, vol. 142, no. 1-2, pp. 144–152. DOI: 10.1016/j.jhazmat.2006.07.072.
Oliveira E.A., Montanher S.F., Andrade A.D., Nóbrega J.A., Rollemberg M.C. Process Biochem., 2005, vol. 40, no. 11, pp. 3485–3490. DOI:10.1016/j.procbio.2005.02.026.
Shaykhiyev I.G., Sverguzova S.V., Shaykhiyeva K.I., Sapronova Zh.A. Khimiya rastitel'nogo syr'ya, 2020, no. 2, pp. 5–18. DOI: 10.14258/jcprm.2020025622. (in Russ.).
Shaykhiyeva K.B., Fridland S.B., Sverguzova S.V. Khimiya rastitel'nogo syr'ya, 2021, no. 4, pp. 47–64. DOI: 10.14258/jcprm.2021049125. (in Russ.).
Shaykhiyev I.G., Shaykhiyeva K.I., Sverguzova S.V., Vinogradenko Yu.A. Khimiya rastitel'nogo syr'ya, 2021, no. 3, pp. 39–54. DOI: 10.14258/jcprm.2021038405. (in Russ.).
Prabhat K.R. Cleaner Materials, 2022, vol. 3, 100054. DOI: 10.1016/j.clema.2022.100054.
Ahmed M.J., Hameed B.H. Journal of Cleaner Production, 2020, vol. 265, 121762. DOI: 10.1016/j.jclepro.2020.121762.
Menya E., Olupot P. W., Storz H., Lubwama M., Kiros Y. Chemical Engineering Research and Design, 2018, vol. 129, pp. 271–296. DOI: 10.1016/j.cherd.2017.11.008.
Ahmaruzzaman M., Gupta V.K. Industrial & Engineering Chemistry Research, 2011, vol. 50, no. 24, pp. 13589–13613. DOI: 10.1021/ie201477c.
World rice acreage from 2010 to 2020 (in million hectares) // Statista.com. URL: https://www.statista.com/statistics/271969/world-rice-acreage-since-2008/#:~:text=In%20crop%20year%202020%2C%20there,44%20million%20hectares%20of%20rice.
Childs N., LeBeau В. Rice Outlook. RCS-21K, U.S. Department of Agriculture, Economic Research Service, Decem-ber 13, 2021.
Suc N.V., Kim C.D. Journal of Dispersion Science and Technology, 2016, vol. 38, no. 2, pp. 216–222. DOI: 10.1080/01932691.2016.1155153.
Zelenskiy G.L. Ris: biologicheskiye osnovy selektsii i agrotekhniki: monografiya. [Rice: biological foundations of breeding and agricultural technology: monograph]. Krasnodar, 2016, 238 p. (in Russ.).
Acharya J., Kumar U., Rafi P.M. Int. J. Curr. Eng. Technol., 2018, vol. 8, pp. 526–530. DOI: 10.14741/ijcet/v.8.3.6.
Moyo G.G., Hu Z. Getahun M.D. Environ. Sci. Pollut. Res., 2020, vol. 27, pp. 28679–28694. DOI: 10.1007/s11356-020-09163-8.
Suhas Carrott P.J.M., Ribeiro Carrott M.M.L. Bioresource Technology, 2007, vol. 98, no. 12, pp. 2301–2312. DOI: 10.1016/j.biortech.2006.08.00.
Agrafiotia E., Kalderis D., Diamadopoulos E. J. Environ. Manag., 2014, vol. 133, pp. 309–314. DOI: 10.1016/j.jenvman.2013.12.007.
Aktas S., Morcali M.H. International Journal of Mineral Processing, 2011, vol. 101, no. 1-4, pp. 63–70. DOI: 10.1016/j.minpro.2011.07.007.
Dahlan I., Ahmad Z., Fadly M., Lee K.T., Kamaruddin A.H., Mohamed A.R. J. Hazard. Mater., 2010, vol. 178, no. 1-3, pp. 249–257. DOI: 10.1016/j.jhazmat.2010.01.070.
Saeed A., Iqbal M., Höll W.H. J. Hazard. Mater., 2009, vol. 168, no. 2-3, pp. 1467–1475. DOI: 10.1016/j.jhazmat.2009.03.062.
Wang S., Li W., Yin X., Wang N., Yuan S., Yan T., Chen D. International Journal of Environmental Research and Public Health, 2019, vol. 16, no. 21, p. 4129. DOI: 10.3390/ijerph16214129.
Akhtar M., Iqbal S., Kausar A., Bhanger M.I., Shaheen M.A. Colloids and Surfaces B: Biointerfaces, 2010, vol. 75, no. 1, pp. 149–155. DOI: 10.1016/j.colsurfb.2009.08.025.
Alexander D., Ellerby R., Hernandez A., Wu F., Amarasiriwardena D. Microchem. J., 2017, vol. 135, pp. 129–139. DOI: 10.1016/j.microc.2017.08.001.
Ali I.O., Salama T.M., Lateef M.A., Gumaa H.A., Hegazy M.A., Bakr M.F. Environmental Technology & Innovation, 2015, vol. 4, pp. 110–122. DOI: 10.1016/j.eti.2015.05.003.
Awwad N.S., Gad H.M.H., Ahmad M.I., Aly H.F. Colloids and Surfaces B: Biointerfaces, 2010, vol. 81, no. 2, pp. 593–599. DOI:10.1016/j.colsurfb.2010.08.00.
Bansal M., Garg U., Singh D., Garg V.K. J. Hazard. Mater., 2009, vol. 162, no. 1, pp. 312–320. DOI: 10.1016/j.jhazmat.2008.05.037.
Shafey E.I. J. Hazard. Mater., 2010, vol. 175, pp. 319–327. DOI: 10.1016/j.jhazmat.2009.10.006.
Jiang X., An Q.-D., Xiao Z.-Y., Zhai S.-R., Shi Z. Mater. Res. Bull., 2018, vol. 102, pp. 218–225. DOI: 10.1016/j.materresbull.2018.037.
Khan M.A., Khan S., Ding X., Khan A., Alam M. Chemosphere, 2018, vol. 193, pp. 1120–1126. DOI: 10.1016/j.chemosphere.2017.11.
Lin C., Luo W., Chen J., Zhou Q. Chem. Phys. Lett., 2017, vol. 690, pp. 68–73. DOI: 10.1016/j.cplett.2017.10.029.
Masih M., Anthony P., Siddiqui S.H. Environmental Nanotechnology, Monitoring & Management, 2018, vol.10, pp. 189–198. DOI: 10.1016/j.enmm.2018.07.003.
Masoud M.S., El-Saraf W.M., Abdel-Halim A.M., Ali A.E., Mohamed E.A., Hasan H.M.I. Arab. J. Chem., 2016, vol. 9, pp. 1590–1596. DOI: 10.1016/j.arabjc.2012.04.028.
Naiya T.K., Bhattacharya A.K., Mandal S., Das S.K. J. Hazard. Mater., 2009, vol. 163, no. 2-3, pp. 1254–1264. DOI: 10.1016/j.jhazmat.2008.07.119.
O’Connor D., Peng T., Li G., Wang S., Duan L., Mulder J., Hou D. Sci. Total Environ, 2018, vol. 621, pp. 819–826. DOI: 10.1016/j.jhazmat.2008.07.119.
Pehlivan E., Tran T.H., Ouédraogo W.K.I., Schmidt C., Zachmann D., Bahadir M. Fuel Processing Technology, 2013, vol. 106, pp. 511–517. DOI: 10.1016/j.fuproc.2012.09.021.
Tavlieva M.P., Genieva S.D., Georgieva V.G., Vlaev L.T. Journal of Molecular Liquids, 2015, vol. 211, pp. 938–947. DOI: 10.1016/j.molliq.2015.08.015.
Nath B.K., Chaliha C., Kalita E. J. Environ. Manage., 2019, vol. 246, pp. 397–409. DOI: 10.1016/j.jenvman.2019.06.008.
Xiong Y., Cui X., Wang D., Wang Y., Lou Z., Shan W., Fan Y. Materials Science and Engineering: C, 2019, vol. 99, pp. 1115–1122. DOI: 10.1016/j.msec.2019.02.028.
Shi J., Fan X., Tsang D.C.W., Wang F., Shen Z., Hou D., Alessi D.S. Chemosphere, 2019, vol. 235, pp. 825–831. DOI: 10.1016/j.chemosphere.2019.06.237.
Sugashini S., Begum K.M. Biorem. J., 2013, vol. 17, no. 2, pp. 97–106. DOI: 10.1080/10889868.2013.786016.
Zhang Y., Zheng R., Zhao J., Ma F., Zhang Y., Meng Q. Biorem. J., 2014, vol. 17, no. 2, pp. 1–8. DOI: 10.1155/2014/496878.
Asif Z., Chen Z. Applied Water Science, 2015, vol. 7, no. 3, pp. 1449–1458. DOI: 10.1007/s13201-015-0323-x.
Azadi F., Saadat S., Karimi-Jashni A. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2017, vol. 42, no. 3, pp. 315–323. DOI: 10.1007/s40996-017-0090-z.
Farhan A.T.A., Ong K.K., Yunus W.M.Z.W., Jabit M.L., Fitrianto A., Hussin A.G.A., Sulaiman A.Z., Jamal S.H., Osman J., Teoh C.C. Nat. Environ. Pollut. Technol., 2017, vol. 16, pp. 889–892.
Xiang J., Lin Q., Cheng S., Guo J., Yao X., Liu Q., Liu D. Environ. Sci. Pollut. Res., 2018, vol. 25, no. 14, pp. 14032–14042. DOI: 10.1007/s11356-018-1594-1.
Severo F.F., da Silva L.S., Moscôso J.S.C., Sarfaraz Q., Rodrigues Júnior L.F., Lopes A.F., Molin G.D. SN Applied Sciences, 2020, vol. 2, 1286. DOI: 10.1007/s42452-020-3088-2.
Ullah S., Assiri M.A., Bustam M.A., Al-Sehemi A.G., Abdul Kareem F.A., Irfan A. Paddy and Water Environment, 2020, vol. 18, pp. 455–468. DOI: 10.1007/s10333-020-00794-8.
Ullah S., Assiri M.A., Al-Sehemi A.G., Bustam M.A., Sagir M., Abdulkareem F.A., Irfan A. International Journal of Environmental Research, 2019, vol. 14, pp. 43–60. DOI: 10.1007/s41742-019-00235-3.
Sanka P.M., Rwiza M.J., Mtei K.M. Water, Air, & Soil Pollution, 2020, vol. 231, no. 5, 244. DOI: 10.1007/s11270-020-04624-9231.
Zafar S., Khan M.I., Lashari M.H. Emergent. Mater., 2020, vol. 3, pp. 857–870. DOI: 10.1007/s42247-020-00126-w.
Sun C., Chen T., Huang Q., Wang J., Lu S., Yan J. Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 8902–8913. DOI: 10.1007/s11356-019-04321-z.
Oladoja N.A., Ololade I.A., Alimi O.A., Akinnifesi T.A., Olaremu G.A. Chemical Engineering Research and Design, 2013, vol. 91, no. 12, pp. 2691–2702. DOI: 10.1016/j.cherd.2013.03.001.
Wongrod S., Simon S., Guibaud G., Lens P.N.L., Pechaud Y., Huguenot D., van Hullebusch E.D. J. Environ. Man-age., 2018, vol. 219, pp. 277–284. DOI: 10.1016/j.jenvman.2018.04.108.
Zhao P., Guo X., Zheng C. Journal of Environmental Sciences, 2010, vol. 22, no. 10, pp. 1629–1636. DOI: 10.1016/s1001-0742(09)60299-0.
Gharekhani H., Olad A., Mirmohseni A., Bybordi A. Carbohydrate Polymers, 2017, vol. 168, pp. 1–13. DOI: 10.1016/j.carbpol.2017.03.047.
Masoumi A., Hemmati K., Ghaemy M. Chemosphere, 2016, vol. 146, pp. 253–262. DOI: 10.1016/j.chemosphere.2015.12.017.
Alalwan H.A., Abbas M.N., Abudi Z.N., Alminshid A.H. Environmental Technology & Innovation, 2018, vol. 12, pp. 1–13. DOI: 10.1016/j.eti.2018.07.00.
Chen S., Qin C., Wang T., Chen F., Li X., Hou H., Zhou M. J. Mol. Liq., 2019, vol. 285, pp. 62–74. DOI: 10.1016/j.molliq.2019.04.035.
Kaykioğlu G., Güneş E. Desalin. Water Treat., 2015, vol. 57, no. 15, pp. 7085–7097. DOI: 10.1080/19443994.2015.1014859.
Jiang Z., Hu D. J. Mol. Liq., 2018, vol. 108, pp. 146–154. DOI: 10.1016/j.molliq.2018.11.153.
Chakraborty S., Chowdhury S., Saha P.D. Carbohydr. Polym., 2011, vol. 86, pp. 1533–1541. DOI: 10.1016/j.carbpol.2011.06.058.
Chowdhury S., Mishra R., Saha P., Kushwaha P. Desalination, 2011, vol. 265, no. 1-3, pp. 159–168. DOI: 10.1016/j.desal.2010.07.047.
Chen X.-G., Lv S.-S., Liu S.-T., Zhang P.-P., Zhang A.-B., Sun J., Ye Y. Separ. Sci. Technol., 2012, vol. 47, pp. 147–156. DOI: 10.1080/01496395.2011.606865.
Patil C., Ratnamala G.M., Channamallayya S.T. Int. Res., 2015, vol. 2, pp. 769–774.
Saroj S., Singh S.V., Mohan D. Arabian J. Sci. Eng., 2015, vol. 40, pp. 1553–1564. DOI: 10.1007/s13369-015-1630-0.
Naseer R., Afzal N., Hassan Z.U., Naseer R., Afzal N., Hassan Z.U., Saeed S., Mujhahid H., Faryal S., Aslam S., Rehman H.U. Polish Journal of Environmental Studies, 2020, vol. 29, no. 4, pp. 2795–2802. DOI: 10.15244/pjoes/112353.
Darabi S.F.S., Bahramifar N., Khalilzadeh M.A. J. Appl. Res. Water Wastewater, 2018, vol. 5, no. 1, pp. 392–398. DOI: 10.22126/ARWW.2018.866.
De Azevedo A.C.N., Vaz M.G., Gomes R.F., Pereira A.G.B., Fajardo A.R., Rodrigues F.H.A. Iranian Polymer Jour-nal, 2017, vol. 26, no. 2, pp. 93–105. DOI: 10.1007/s13726-016-0500-2.
Shabandokht M., Binaeian E., Tayebi H.-A. Desalin. Water Treat, 2016, vol. 57, no. 57, pp. 27638–27650. DOI: 10.1080/19443994.2016.1172982.
Hosseinzadeh H., Mohammadi S. Sep. Sci. Technol., 2016, vol. 51, no. 6, pp. 939–953. DOI: 10.1080/01496395.2016.1142564.
Popoola L.T., Aderibigbe T.A., Yusuff A.S., Munir M.M. Environ. Qual. Manag., 2018, vol. 28, no. 2, pp. 63–78. DOI: 10.1002/tqem.21597.
Kumar B., Kumar U. Korean J. Chem. Eng., 2015, vol. 32, no. 8, pp. 1655–1666. DOI: 10.1007/s11814-014-0351-5.
Vaz M.G., Pereira A.G.B., Fajardo A.R., Azevedo A.C.N., Rodrigues F.H.A. Water, Air, & Soil Pollution, 2016, vol. 228, no. 1, pp. 1–14. DOI: 10.1007/s11270-016-3185-4.
Patabandige D.S.B.T., Wadumethrige S.H., Wanniarachchi S. International Journal of Environmental Science and Technology, 2019, vol. 16, pp. 8375–8388. DOI: 10.1007/s13762-019-02394-4.
Costa J.A.S., Paranhos C.M. SN Appl. Sci., 2019, vol. 1, p. 397. DOI: 10.1007/s42452-019-0436-1.
Costa Junior I.L., Finger L., Quitaiski P.P., Neitzke S.M., Besen J.V., Correa M.K., Bortoli J.R.M. Eclética Química Journal, 2018, vol. 43, no. 3, pp. 45–58. DOI: 10.26850/1678-4618eqj.v43.3.2018.p45-58.
Azeez L., Adejumo A.L., Asaolu S.S., Adeoye M.D., Adetoro R.O. Chemistry Africa, 2020, vol. 3, pp. 457–467. DOI: 10.1007/s42250-020-00142-7.
Zein R., Tomi Z.B., Fauzia S. J. Iran Chem. Soc., 2020, vol. 17, pp. 2599–2612. DOI: 10.1007/s13738-020-01955-6.
Machado Garcia R., Carleer R., Arada Pérez M., Gryglewicz G., Maggen J., Haeldermans T., Yperman J. Biomass Convers. Biorefinery, 2020, vol. 12, pp. 323–339. DOI: 10.1007/s13399-020-00699-w.
Islam T., Peng C., Ali I., Li J., Khan Z.M., Sultan M., Naz I. Arab. J. Sci. Eng., 2020, vol. 46, no. 1, pp. 233–246. DOI: 10.1007/s13369-020-04537-z.
Tsamo C., Kidwang G.D., Dahaina D.C. SN Appl. Sci., 2020, vol. 2, p. 256. DOI: 10.1007/s42452-020-2057-0.
Luyen N.T., Linh H.X., Huy T.Q. J. Electron. Mater, 2020, vol. 49, pp. 1142–1149. DOI: 10.1007/s11664-019-07798-z.
Ashrafi S.D., Kamani H., Mahvi A.H. Desalin. Water Treat, 2014, vol. 57, no. 2, pp. 738–746. DOI: 10.1080/19443994.2014.979329.
Ashrafi S.D., Kamani H., Soheil Arezomand H., Yousefi N., Mahvi A.H. Desalin. Water Treat, 2015, vol. 57, no. 30, pp. 14051–14059. DOI: 10.1080/19443994.2015.1060903.
Jiang Z., Hu D. J. Mol. Liq., 2018, vol. 108, pp. 146–154. DOI: 10.1016/j.molliq.2018.11.153.
Popoola L.T., Aderibigbe T.A., Yusuff A.S., Munir M.M. Environ. Qual. Manag., 2019, vol. 28, no. 2, pp. 79–88. DOI: 10.1002/tqem.21602.
Khor S.-M., Seng C.-E., Lim P.-E., Ng S.-L., Ahmad Sujari A.N. Desalin. Water Treat, 2015, vol. 57, no. 22, pp. 10349–10360. DOI: 10.1080/19443994.2015.1033650.
Singh N., Balomajumder C. Desalin. Water Treat, 2016, vol. 57, no. 50, pp. 23903–23917. DOI: 10.1080/19443994.2015.1137234.
Sudhakar P., Mall I.D., Srivastava V.C. Desalin. Water Treat, 2015, vol. 57, no. 26, pp. 12375–12384. DOI: 10.1080/19443994.2015.1050700.
Lv S., Li C., Mi J., Meng H. Appl. Surf. Sci., 2020, vol. 510, 145425. DOI: 10.1016/j.apsusc.2020.145425.
Shen Y. Global Challenges, 2018, vol. 2, no. 12, 1800043. DOI: 10.1002/gch2.201800043.
Mandal A., Mukhopadhyay P., Das S.K. SN Applied Sciences, 2019, vol. 1, no. 2, pp. 192–205. DOI: 10.1007/s42452-019-0203-3.
Mandal A., Das S.K. Water Conserv. Sci. Eng., 2019, vol. 4, pp. 149–161. DOI: 10.1007/s41101-019-00075-4.
Ashrafi S.D., Kamani H., Jaafari J., Mahvi A.H. Desalin. Water Treat, 2015, vol. 57, no. 35, pp. 16456–16465. DOI: 10.1080/19443994.2015.1080188.
Zeng Z., Tian S., Liu Y., Tan X., Zeng G., Jiang L., Li J. Journal of Chemical Technology & Biotechnology, 2017, vol. 93, no. 4, pp. 1075–1084. DOI: 10.1002/jctb.5464.
Costa J.A.S., Sarmento V.H.V., Romão L.P.C., Paranhos C.M. Biomass Convers. Biorefinery, 2020, vol. 10, pp. 1105–1120. DOI: 10.1007/s13399-019-00476-4.
Costa J.A.S., Garcia A.C.F.S., Santos D.O. J. Braz. Chem. Soc., 2014, vol. 25, pp. 197–207. DOI: 10.5935/0103- 5053.20130284.
Costa J.A.S., Sarmento V.H.V., Romão L.P.C. Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 25476–25490. DOI: 10.1007/s11356-019-05852-1.
Costa J.A.S., Sarmento V.H.V., Romão L.P.C., Paranhos C.M. Silicon, 2019, vol. 12, pp. 1913–1923. DOI: 10.1007/s12633-019-00289-0.
Andrade C.A., Zambrano-Intriago L.A., Oliveira N.S., Vieira J.S., Quiroz-Fernández L.S., Rodríguez-Díaz J.M. Wa-ter, Air, & Soil Pollution, 2020, vol. 231, 103. DOI: 10.1007/s11270-020-04473-6.
Hashemi M.M.R., Abolghasemi S.S., Ashournia M., Modaberi H. Environ. Sci. Pollut. Res., 2019, vol. 26, no. 20, pp. 20344–20351. DOI: 10.1007/s11356-019-05396-4.
Mayakaduwa S.S., Herath I., Ok Y.S., Mohan D., Vithanage M. Environmental Science and Pollution Research, 2017, vol. 24, no. 29, pp. 22755–22763. DOI: 10.1007/s11356-016-7430-6.
Abigail M.E.A., Chidambaram R. Ecological Engineering, 2016, vol. 92, pp. 97–105. DOI: 10.1016/j.ecoleng.2016.03.020.
Deng S., Niu L., Bei Y., Wang B., Huang J., Yu G. Chemosphere, 2013, vol. 91, no. 2, pp. 124–130. DOI: 10.1016/j.chemosphere.2012.11.015.
Lingamdinne L.P., Roh H., Choi Y.-L., Koduru J. R., Yang J.-K., Chang Y.-Y. J. Ind. Eng. Chem., 2015, vol. 32, pp. 178–186. DOI: 10.1016/j.jiec.2015.08.012.
Menya E., Olupot P.W., Storz H., Lubwama M., Kiros Y. Biomass Conv. Bioref., 2020. DOI: 10.1007/s13399-020-01158-2.
Copyright (c) 2022 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.