STUDY OF THE PROCESS OF CARBONIZATION OF POWDERED CELLULOSE GRANULES IMPREGNATED WITH AgNO3 AND Pd(NO3)2

UDC 546.57:546.98:661.728.7:546.26:66.092-977

  • Andrey Borisovich Shishmakov Institute of Organic Synthesis. AND I. Postovsky Ural Branch of the Russian Academy of Sciences
  • Yuliya Vladimirovna Mikushina Institute of Organic Synthesis. AND I. Postovsky Ural Branch of the Russian Academy of Sciences Email: mikushina@ios.uran.ru
  • Ol'ga Vasil'yevna Koryakova Institute of Organic Synthesis. AND I. Postovsky Ural Branch of the Russian Academy of Sciences Email: ir@ios.uran.ru
Keywords: silver, palladium, carbon carrier, powdered cellulose, pyrolysis

Abstract

A comparative study of the process of carbonization of powdered cellulose granules and powdered cellulose granules impregnated with silver and palladium nitrate salts was carried out. The process was carried out in the temperature range 200–600 °С. The influence of the presence of metals on the course of carbonization of powdered cellulose and the features of the reduction of silver and palladium during carbonization were studied by IR spectroscopy and X-ray phase analysis. It has been established that the presence of silver in powdered cellulose does not affect the yield of carbonized material. The presence of palladium in powdered cellulose leads to the fact that the yield of carbonizate in the temperature range of 300–600 °C is reduced relative to the yield of carbonizate simply from powdered cellulose. It has been established by IR spectroscopy that impregnation with salts and subsequent drying at 90 °C of powdered cellulose granules leads to the appearance of carboxyl groups in it, which are not observed in unimpregnated powdered cellulose. With an increase in the heat treatment temperature to 200 °C, the amount of these groups in the silver-containing material increases sharply, while in the palladium-containing material it remains unchanged. A significant increase in the number of C=O groups in the palladium-containing material begins at 300 °C. The increased relative content of C=O groups in the metal-containing material is also preserved in the temperature range of 300–500 °C. The presence of metals in powdered cellulose at pyrolysis temperatures of 300–500 °C leads to a decrease in the content of C=C groups in the carbon matrix relative to methylene (methine) groups. At 600 °C, the carbon matrix of all coals is completely carbonized. X-ray diffraction analysis recorded the appearance of metallic silver and palladium in metal-containing coals at a temperature of 300 °C As the carbonization temperature increases, the content of crystalline Ag(0) and Pd(0) in coals increases. No other forms of silver and palladium are found in the temperature range of 300–600 °С. Testing of metal-containing coals in a model reaction of hydrogen peroxide decomposition showed: in silver-containing carbonizates, the availability of silver particles for H2O2 increases due to an increase in the pyrolysis temperature; in Pd/C, an additional factor that increases the availability of metal particles is the interaction of palladium with carbonizate during pyrolysis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Andrey Borisovich Shishmakov, Institute of Organic Synthesis. AND I. Postovsky Ural Branch of the Russian Academy of Sciences

научный сотрудник, кандидат технических наук

Yuliya Vladimirovna Mikushina, Institute of Organic Synthesis. AND I. Postovsky Ural Branch of the Russian Academy of Sciences

младший научный сотрудник

Ol'ga Vasil'yevna Koryakova, Institute of Organic Synthesis. AND I. Postovsky Ural Branch of the Russian Academy of Sciences

научный сотрудник, кандидат химических наук

References

Alshammari H.M., Aldosari O.F., Alotaibi M.H., Alotaibi R.L., Alhumaimess M.S., Morad M.H., Adil S.F., Shaik M.R., Islam M.S., Khan M., Alwarthan A. Applied Sciences, 2021, vol. 11, 4822. DOI: 10.3390/app11114822.

Mao Z., Gu H., Lin X. Catalysts, 2021, vol. 11, no. 9, 1078. DOI: 10.3390/catal11091078.

Zhou X-Y., Chen X. Letters in Organic Chemistry, 2021, vol. 18, no. 8, pp. 625–633. DOI: 10.2174/1570178617999201005211251.

Huang X., Liu T., Wang J., Wei F., Ran J., Kudo S. Journal of the Energy Institute, 2020, vol. 93, no. 6, pp. 2505–2510. DOI: 10.1016/j.joei.2020.08.010.

Rachel N., Abdelaziz B., Daouda K., Julius N., Gaelle D., Abdelrani Y., Mehdi L., Joseph K. Materials Sciences and Applications, 2017, vol. 8, no. 3, pp. 258–272. DOI: 10.4236/msa.2017.83018.

Taha A., Aissa M., Da’na E. Molecules, 2020, vol. 25, no. 7, 1586. DOI: 10.3390/molecules25071586.

Trinh V.T., Nguyen T.M.P., Van H.T., Hoang L.P., Nguyen T.V., Ha L.T., Vu X.H., Pham T.T., Nguyen T.N., Quang N.V., Nguyen X.C. Scientific Reports, 2020, vol. 10, no. 3, 3634. DOI: 10.1038/s41598-020-60542-0.

Van H.T., Nguyen T.M.P., Thao V.T., Van H.T., Nguyen T.V., Nguyen L.H. Water Air and Soil Pollution, 2018, vol. 229, 393. DOI: 10.1007/s11270-018-4043-3.

Shimabuku Q.L., Ueda-Nakamura T., Bergamasco R., Fagundes-Klen M.R. Process Safety and Environmental Protec-tion, 2018, vol. 117, pp. 33–42. DOI: 10.1016/j.psep.2018.04.005.

Iwanow M., Gärtner T., Sieber V., König B. Beilstein Journal of Organic Chemistry, 2020, vol. 16, no. 1, pp. 1188–1202. DOI: 10.3762/bjoc.16.104.

Zou B., Chen X., Xia J. Zhou C. Journal of Chemistry, 2018, 2018743. DOI: 10.1155/2018/2018743.

Sun X., Dawson S.R., Parmentier T.E., Malta G., Davies T.E., He Q., Lu L., Morgan D.J., Carthey N., Johnston P., Kondrat S.A., Freakley S.J., Kiely C.J., Hutchings G.J. Nature Chemistry, 2020, vol. 12, no. 6, pp. 560–567. DOI: 10.1038/s41557-020-0446-z.

Lokteva Ye.S., Golubina Ye.V., Antonova M.V., Klokov S.V., Maslakov K.I., Yegorov A.V., Likholobov V.A. Ki-netika i kataliz, 2015, vol. 56, no. 6, pp. 753–762. DOI: 10.1134/S0023158415060099. (in Russ.).

Klokov S.V. Mono- i bimetallicheskiye kompozitnyye katalizatory gidrodekhlorirovaniya khlorbenzolov na osnove pal-ladiya, kobal'ta i ugleroda: diss. … kand. khim. nauk. [Mono- and bimetallic composite catalysts for the hydrodechlo-rination of chlorobenzenes based on palladium, cobalt and carbon: diss. … cand. chem. Sciences]. Moscow, 2021, 139 p. (in Russ.).

Shishmakov A.B., Mikushina Yu.V., Koryakova O.V. Khimiya rastitel'nogo syr'ya, 2021, no. 2, pp. 333–342. DOI: 10.14258/jcprm.2021028813. (in Russ.).

Mikova N.M., Naymushina L.V., Chesnokov N.V., Pavlenko N.I., Selyutin G.Ye., Krzhton A., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2001, no. 4, pp. 53–58. (in Russ.).

Chesnokov N.V., Mikova N.M., Naymushina L.V., Kuznetsov B.N. Khimiya rastitel'nogo syr'ya, 2001, no. 4, pp. 59–64. (in Russ.).

Smotrina T.V. Materialy X Vserossiyskoy konferentsii «Struktura i dinamika molekulyarnykh sistem». [Proceedings of the X All-Russian Conference "Structure and Dynamics of Molecular Systems"]. Kazan', 2003, vol. 10 (2), pp. 219–221. (in Russ.).

Kuznetsov B.N., Chesnokov N.V., Mikhlin Yu.L., Tsyganova S.I., Mikova N.M., Garyntseva N.V., Ivanchenko N.M. Khimiya v interesakh ustoychivogo razvitiya, 2015, vol. 23, no. 5, pp. 515–521. DOI: 10.15372/KhUR20150502. (in Russ.).

Senchikhin I.N., Shabatin V.P., Shabatin A.V. Materialy XII Konferentsii molo-dykh uchenykh, aspirantov i studentov IFKHE RAN «FIZIKOKHIMIYA – 2017». [Proceedings of the XII Conference of young scientists, graduate students and students of the Institute of Physical Chemistry RAS "PHYSICOCHEMISTRY - 2017"]. Moscow, 2017, pp. 57–59. (in Russ.).

Tarasenko Yu.A., Boldyreva N.A., Gerasimyuk I.P., Lapko V.F., Yatsimirskiy V.K. Kataliz i neftekhimiya, 2003, no. 11, pp. 51–56. (in Russ.).

Tarasenko Yu.A., Gerasimyuk I.P., Kalenyuk A.A., Lapko V.F. Poverkhnost', 2015, no. 7(22), pp. 161–172. (in Russ.).

Published
2022-12-15
How to Cite
1. Shishmakov A. B., Mikushina Y. V., Koryakova O. V. STUDY OF THE PROCESS OF CARBONIZATION OF POWDERED CELLULOSE GRANULES IMPREGNATED WITH AgNO3 AND Pd(NO3)2 // chemistry of plant raw material, 2022. № 4. P. 321-331. URL: http://journal.asu.ru/cw/article/view/10994.
Section
Technology