ISSUES OF THE STRUCTURAL ORGANIZATION OF LIGNIN AND PROSPECTS FOR ITS PROCESSING

UDC 66.014, 54.022

  • Aleksandr Yur'yevich Kozhevnikov Northern (Arctic) Federal University named after M.V. Lomonosov Email: akozhevnikov@mail.ru
  • Semen Leonidovich Shestakov Northern (Arctic) Federal University named after M.V. Lomonosov Email: laston85@mail.ru
  • Yuliya Aleksandrovna Sypalova Northern (Arctic) Federal University named after M.V. Lomonosov Email: yuliya.popova01@mail.ru
Keywords: Biopolymers, lignin, birch, biorefining, nuclear magnetic resonance

Abstract

In this article, we represented the review of literature data about the study of lignin as one of the most abundant biopolymers. The review is based on the articles published in the most quoted world publishing. It is noted that already nowadays the lignin is considered as a powerful renewable source of valuable organic raw materials, also it’s pointed that potential possibilities of lignin valorization are much wider than those are used in present times. The special attention is paid to the structure and molecular organization of birch lignin, which wood is actively utilized in chemical industry, meanwhile the hardwood lignins are less studied in literature than softwood lignins. The authors touched the most basic methods of research of such complex and irregular polymer as lignin, methods’ advantages, disadvantages and perspectives are analyzed. It is noted that nowadays the most effective methods of lignin structure units study are pyrolisys gas chromatography and nuclear magnetic resonance. The article describes various ways of lignins isolation from the wood, and influence of the isolation way on the structure of isolated substance. Also, the structural features of birch lignin and its differences from other species are shown.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Aleksandr Yur'yevich Kozhevnikov, Northern (Arctic) Federal University named after M.V. Lomonosov

заместитель директора ЦКП НО «Арктика»

Semen Leonidovich Shestakov, Northern (Arctic) Federal University named after M.V. Lomonosov

старший научный сотрудник ЦКП НО «Арктика»

Yuliya Aleksandrovna Sypalova, Northern (Arctic) Federal University named after M.V. Lomonosov

младший научный сотрудник ЦКП НО «Арктика»

References

Paone E., Tabanelli T., Mauriello F. Current Opinion in Green and Sustainable Chemistry, 2020, vol. 24, pp. 1–6. DOI: 10.1016/j.cogsc.2019.11.004.

Xu E., Campanella O., Ye X., Jin Z., Liu D., BeMiller J. Trends in Food Science & Technology, 2020, vol. 99, pp. 167–180. DOI: 10.1016/j.tifs.2020.02.018.

Bidlack J.E., Dashek W.V. Plant Cells and Their Organelles. Hoboken: Wiley Blackwell, 2017, pp. 209–238.

Vanholme R., De Meester B., Ralph J., Boerjan W. Current opinion in biotechnology, 2019, vol. 56, pp. 230–239. DOI: 10.1016/j.copbio.2019.02.018.

Rubin E.M. Nature, 2008, vol. 454, no. 7206, pp. 841–845. DOI: 10.1038/nature07190.

Burhenne L., Messmer J., Aicher T., Laborie M. Journal of Analytical and Applied Pyrolysis, 2013, vol. 101, pp. 177–184. DOI: 10.1016/j.jaap.2013.01.012.

FAOSTAT database: Food and Agriculture Organization of the United Nations 2016–2022. URL: https://www.fao.org/faostat/en/#data/FO.

Feofilova Ye.P., Mysyakina I.S. Prikladnaya biokhimiya i mikrobiologiya, 2016, vol. 52, no. 6, pp. 559–569. DOI: 10.7868/S0555109916060052. (in Russ.).

Hu J., Zhang Q., Lee D.J. Bioresource Technology, 2018, vol. 247, pp. 1181–1183. DOI: 10.1016/j.biortech.2017.08.169.

Ragauskas A.J., Beckham G.T., Biddy M.J., Chandra R., Chen F., Davis M.F., Davison B.H., Dixon R.A., Gilna P., Keller M., Langan P., Naskar A.K., Saddler J.N., Tschaplinski T.J., Tuskan G.A., Wyman C.E. Science, 2014, vol. 344, no. 6185, article 1246843. DOI: 10.1126/science.1246843.

Banu J.R., Kavitha S., Kannah R.Y., Devi T.P., Gunasekaran M., Kim S.-H., Kumar G. Bioresource technology, 2019, article 121790. DOI: 10.1016/j.biortech.2019.121790.

Schutyser W., Renders T., Van den Bosch S., Koelewijn S.-F., Beckham G.T., Sels B.F. Chemical Society Reviews, 2018, vol. 47, no. 3, pp. 852–908. DOI: 10.1039/C7CS00566K.

Ponnusamy V.K., Nguyen D.D., Dharmaraja J., Shobana S., Banu J.R., Saratale R.G., Chang S.W., Kumar G. Biore-source technology, 2019, vol. 271, pp. 462–472. DOI: 10.1016/j.biortech.2018.09.070.

Zhang C., Xu L.-H., Ma C.-Y., Wang H.-M., Zhao Y.-Y., Wu Y.-Y., Wen J.-L. Front. Energy Res., 2020, vol. 8, arti-cle 181. DOI: 10.3389/fenrg.2020.00181.

Wang H.-M., Ma C.-Y., Li H.-Y., Chen T.-Y., Wen J.-L., Cao X.-F., Wang X.-L., Yuan T.-Q., Sun R.-C. ACS Sus-tainable Chem. Eng., 2020, vol. 8, no. 4, pp. 1813–1822. DOI: 10.1021/acssuschemeng.9b05845.

Lan W., Lu F., Regner M., Zhu Y., Rencoret J., Ralph S.A., Zakai U.I., Morree K., Boerjan W., Ralph J. Plant Physiol-ogy, 2015, vol. 167, no. 4, pp. 1284–1295. DOI: 10.1104/pp.114.253757.

del Río J.C., Rencoret J., Prinsen P., Martínez Á.T., Ralph J., Gutiérrez A. Journal of agricultural and food chemistry, 2012, vol. 60, no. 23, pp. 5922–5935. DOI: 10.1021/jf301002n.

Lan W., Rencoret J., del Río J.C., Ralph J. Lignin: Biosynthesis, Functions and Economic Significance. Hauppauge: Nova Science Publisher, 2019, pp. 51–78.

Eloy N.B., Voorend W., Lan W., de Lyra Soriano Saleme M., Cesarino I., Vanholme R., Smith R.A., Goeminne G., Pallidis A., Morreel K., Nicomedes J.Jr., Ralph J., Boerjan W. Plant Physiology, 2017, vol. 173, no. 2, pp. 998–1016. DOI: 10.1104/pp.16.01108.

Lam P.Y., Tobimatsu Y., Takeda Y., Suzuki S., Yamamura M., Umezawa T., Lo C. Plant Physiology, 2017, vol. 174, no. 2, pp. 972–985. DOI: 10.1104/pp.16.01973.

del Río J.C., Rencoret J., Gutiérrez A., Kim H., Ralph J. Plant physiology, 2017, vol. 174, no. 4, pp. 2072–2082. DOI: 10.1104/pp.17.00362.

Rencoret J., Kim H., Evaristo A.B., Gutiérrez A., Ralph J., del Río J.C. Journal of agricultural and food chemistry, 2018, vol. 66, no. 1, pp. 138–153. DOI: 10.1021/acs.jafc.7b04638.

Ralph J., Lapierre C., Boerjan W. Current opinion in biotechnology, 2019, vol. 56, pp. 240–249. DOI: 10.1016/j.copbio.2019.02.019.

Li C., Zhao X., Wang A., Huber G.W., Zhang T. Chemical reviews, 2015, vol. 115, no. 21, pp. 11559–11624. DOI: 10.1021/acs.chemrev.5b00155.

Freudenberg K. Science, 1965, vol. 148, no. 3670, pp. 595–600. DOI: 10.1126/science.148.3670.595.

Anderson E.M., Katahira R., Reed M., Resch M.G., Karp E.M., Beckham G.T., Román-Leshkov Yu. ACS Sustainable Chemistry & Engineering, 2016, vol. 4, no. 12, pp. 6940–6950. DOI: 10.1021/acssuschemeng.6b01858.

Huang J., Fu S., Gan L. Lignin Chemistry and Applications. Oxford: Elsevier, 2019, 276 p.

Gioia C., Lo Re G., Lawoko M., Berglund L. Journal of the American Chemical Society, 2018, vol. 140, no. 11, pp. 4054–4061. DOI: 10.1021/jacs.7b13620.

Lu Y., Lu Y.-C., Hu H.-Q., Xie F.-J., Wey S.-Y., Fan X. Journal of Spectroscopy, 2017, vol. 2017, pp. 1–15. DOI: 10.1155/2017/8951658.

Jiang B., Zhang Yu, Guo T., Zhao H., Jin Y. Polymers, 2018, vol. 10, no. 7, p. 736. DOI: 10.3390/polym10070736.

Shi Z., Xu G., Deng J., Dong M., Murugadoss V., Liu C., Shao Q., Wu S., Guo Z. Green Chemistry Letters and Re-views, 2019, vol. 12, no. 3, pp. 235–243. DOI: 10.1080/17518253.2019.1627428.

Xu G., Shi Z., Zhao Y., Deng J., Dong M., Liu C., Murugadoss V., Mai X., Guo Z. International journal of biological macromolecules, 2019, vol. 126, pp. 376–384. DOI: 10.1016/j.ijbiomac.2018.12.234.

Ralph J., Lapierre C., Lu F.C., Marita J.M., Pilate G., Van Doorsselaere J., Boerjan W., Jouanin L. Journal of Agricul-tural and Food Chemistry, 2001, vol. 49, no. 1, pp. 86–91. DOI: 10.1021/jf001042+.

Zhang L., Gellerstedt G., Ralph J., Lu F. Journal of wood chemistry and technology, 2006, vol. 26, no. 1, pp. 65–79. DOI: 10.1080/02773810600580271.

Heitner C., Dimmel D.R., Schmidt J.A. Lignin and lignans: advances in chemistry. Boca Raton: CRC Press, 2010, 683 p.

Berlin A., Balakshin M. Bioenergy research: advances and applications. Oxford: Elsevier, 2014, pp. 315–336.

Lundquist K. Journal of wood chemistry and technology, 1987, vol. 7, no. 2, pp. 179–185. DOI: 10.1080/02773818708085260.

Ralph J., Landucci L.L. Lignin and lignans: advances in chemistry. Boca Raton: CRC Press, 2011, pp. 137–243.

Fiţigău I.F., Peter F., Boeriu C.G. International journal of chemical, molecular, nuclear, materials and metallurgical engineering, 2013, vol. 7, no. 4, pp. 167–172. DOI: 10.5281/zenodo.1331679.

Shestakov S.L., Kosyakov D.S., Kozhevnikov A.Yu., Ulyanovsky N.V., Popova Yu.A. Khimiya Rastitel'nogo Syr'ya, 2017, no. 2, pp. 81–88. DOI: 10.14258/jcprm.2017021641. (in Russ.).

Fukagawa N., Meshitsuka G., Ishizu A. Journal of wood chemistry and technology, 1991, vol. 11, no. 3, pp. 373–396. DOI: 10.1080/02773819108050280.

Santos R.B., Capanema E.A., Balakshin M.Yu., Chang H.-M., Jameel H. Journal of agricultural and food chemistry, 2012, vol. 60, no. 19, pp. 4923–4930. DOI: 10.1021/jf301276a.

Shuai L., Sitison J., Sadula S., Ding J., Thies M.C., Saha B. ACS Catalysis, 2018, vol. 8, no. 7, pp. 6507–6512. DOI: 10.1021/acscatal.8b00200.

Anderson E.M., Stone M.L., Katahira R., Reed M., Muchero W., Ramirez K.J., Beckham G.T., Román-Leshkov Yu. Nature communications, 2019, vol. 10, no. 1, pp. 1–10. DOI: 10.1038/s41467-019-09986-1.

Balakshin M., Capanema E. Journal of Wood Chemistry and Technology, 2015, vol. 35, no. 3, pp. 220–237. DOI: 10.1080/02773813.2014.928328.

Crestini C., Argyropoulos D.S. J. Agric. Food Chem., 1997, vol. 45, no. 4, pp. 1212−1219. DOI: 10.1021/JF960568K.

Kalabin G.A., Kanitskaya L.V., Kushnarev D.F. Kolichestvennaya spektroskopiya YaMR prirodnogo organicheskogo syr'ya i produktov yego pererabotki. [Quantitative NMR spectroscopy of natural organic raw materials and products of their processing]. Moscow, 2000, 408 p. (in Russ.).

Zakzeski J., Bruijnincx P.C.A., Jongerius A.L., Weckhuysen B.M. Chemical reviews, 2010, vol. 110, no. 6, pp. 3552–3599. DOI: 10.1021/cr900354u.

Aarum I., Devle H., Ekeberg D., Horn S.J., Stenstrøm Y. Journal of Analytical and Applied Pyrolysis, 2017, vol. 127, pp. 211–222. DOI: 10.1016/j.jaap.2017.08.003.

Pikovskoi I.I., Ul’yanovskii N.V., Gorbova N.S., Kosyakov D.S. Journal of Analytical Chemistry, 2021, vol. 76, no. 14, pp. 1610–1617. DOI: 10.1134/S1061934821140082.

Forss K.G., Fremer K.E. Cellulose chemistry and technology, 2006, vol. 40, no. 9–10, pp. 739–748.

Kocheva L.S., Karmanov A.P., Karmanova Y.A. Russian Chemical Bulletin, 2014, vol. 63, no. 9, pp. 2036–2039. DOI: 10.1007/s11172-014-0696-2.

Karmanov A.P., Belyaev V.Yu., Marchenko T.A., Kocheva L.S., Monakov Yu.B. Polymer science. Series A, 2002, vol. 44, no. 2, pp. 129–133.

Belyy V.A., Karmanov A.P., Kocheva L.S., Nekrasova P.S., Kaneva M.V., Lobov A.N., Spirikhin L.V. International journal of biological macromolecules, 2019, vol. 128, pp. 40–48. DOI: 10.1016/j.ijbiomac.2019.01.095.

Lachowicz H., Wróblewska H., Sajdak M., Komorowicz M., Wojtan R. Cellulose, 2019, vol. 26, no. 5, pp. 3047–3067. DOI: 10.1007/s10570-019-02306-2.

Giummarella N., Lawoko M. ACS Sustainable Chemistry & Engineering, 2016, vol. 4, no. 10, pp. 5319–5326. DOI: 10.1021/acssuschemeng.6b00911.

Rencoret J., del Río J.C., Gutiérrez A., Martinez A.T., Li S., Parkås J., Lundquist K. Wood science and technology, 2012, vol. 46, no. 1, pp. 459–471. DOI: 10.1007/s00226-011-0417-z.

Capanema E.A., Balakshin M., Gracz H., Chang H.-M., Jameel H. 16th International Symposium on Wood, Fiber and Pulping Chemistry – Proceedings. Tianjin, 2011, vol. 1, p. 47.

Balakshin M., Capanema E.A., Gracz H., Chang H.-M., Jameel H. Planta, 2011, vol. 233, no. 6, pp. 1097–1110. DOI: 10.1007/s00425-011-1359-2.

Aimi H., Matsumoto Y., Meshitsuka G. Journal of Wood Science, 2005, vol. 51, no. 3, pp. 252–255. DOI: 10.1007/s10086-004-0651-1.

Popova Y.A., Shestakov S.L., Belesov A.V., Pikovskoi I.I., Kozhevnikov A.Yu. International Journal of Biological Macromolecules, 2020, vol. 164, pp. 3814–3822. DOI: 10.1016/j.ijbiomac.2020.08.240.

Balakshin M.Y., Capanema E.A., Sulaeva I., Schlee P., Huang Z., Feng M., Borghei M., Rojas O.J., Potthast A., Rosenau T. ChemSusChem., 2021, vol. 14, no. 4, pp. 1016–1036. DOI: 10.1002/cssc.202002553.

Faleva A.V., Kozhevnikov A.Yu., Pokryshkin S.A., Falev D.I., Shestakov S.L., Popova Y.A. Journal of wood chemis-try and technology, 2020, vol. 40, no. 3, pp. 178–189. DOI: 10.1080/02773813.2020.1722702.

Cao Y., Chen S., Zhang S., Ok Y.S., Matsagar B.M., Wu K.C.-W., Tsang D. Bioresource technology, 2019, vol. 291, article 121878. DOI: 10.1016/j.biortech.2019.121878.

Erdocia X., Ramos F.H., Morales A., Izaguirre N., de Hoyos-Martinez P.L., Labidi J. Lignin-Based Materials for Bio-medical Applications. Oxford: Elsevier, 2021, pp. 61–105. DOI: 10.1016/B978-0-12-820303-3.00004-7.

Gil-Chávez G.J., Gurikov P., Hu X., Meyer R., Reynolds W., Smirnova I. Biomass Conversion and Biorefinery, 2021, vol. 11, no. 6, pp. 2387–2403. DOI: 10.1007/s13399-019-00458-6.

Gabov K., Gosselink R.J.A., Smeds A.I., Fardim P. Journal of agricultural and food chemistry, 2014, vol. 62, no. 44, pp. 10759–10767. DOI: 10.1021/jf5037728.

Lagerquist L., Pranovich A.V., Smeds A.I., von Schoultz S., Vähäsalo L., Rahkila J., Kilpeläinen I., Tamminen T., Willför S.M., Eklund P.C. Industrial Crops and Products, 2018, vol. 111, pp. 306–316. DOI: 10.1016/j.indcrop.2017.10.040.

Paulsen Thoresen P., Lange H., Crestini C., Rova U., Matsakas L., Christakopoulos P. ACS omega, 2021, vol. 6, no. 6, pp. 4374–4385. DOI: 10.1021/acsomega.0c05719.

Wang L., Tan L., Hu L., Wang X., Koppolu R., Tirri T., van Bochove B., Ihalainen P., Seleenmary Sobhanadhas L.S., Seppälä J.V., Willför S., Toivakka M., Xu C. ACS Sustainable Chemistry & Engineering, 2021, vol. 9, no. 26, pp. 8770–8782. DOI: 10.1021/acssuschemeng.1c01576.

Zhou S., Liu L., Wang B., Xu F., Sun R-C. Process biochemistry, 2012, vol. 47, no. 12, pp. 1799–1806. DOI: 10.1016/j.procbio.2012.06.006.

Dick T.A., Couve J., Gimello O.C., Mas A., Robin J.-J. Polymer, 2017, vol. 118, pp. 280–296. DOI: 10.1016/j.polymer.2017.04.036.

Dörrstein J., Scholz R., Schwarz D., Schieder D., Sieber V., Walther F., Zollfrank C. Compos. Struct., 2018, vol. 189, pp. 349–356. DOI: 10.1016/j.compstruct.2017.12.003.

Wen J.L., Xue B.-L., Sun S.-L., Sun R.-C. Journal of Chemical Technology & Biotechnology, 2013, vol. 88, no. 9, pp. 1663–1671. DOI: 10.1002/jctb.4017.

Anugwom I., Eta V., Virtanen P., Mäki-Arvela P., Hedenström M., Hummel M., Sixta H., Mikkola J.-P. ChemSus-Chem., 2014, vol. 7, no. 4, pp. 1170–1176. DOI: 10.1002/cssc.201300773.

Wen J.L., Sun S.-L., Xue B.-L., Sun R.-C. Journal of agricultural and food chemistry, 2013, vol. 61, no. 3, pp. 635–645. DOI: 10.1021/jf3051939.

Kuznetsov B.N., Sudakova I.G., Chudina A.I., Garyntseva N.V., Kazachenko A.S., Skripnikov A.M., Malyar Y., Ivanov I.P. Biomass Conv. and Bioref., 2022, pp. 1–15. DOI: 10.1007/s13399-022-02498-x.

Jędrzejczak P., Collins M.N., Jesionowski T., Klapiszewski Ł. International Journal of Biological Macromolecules, 2021, vol. 187, pp. 624–650. DOI: 10.1016/j.ijbiomac.2021.07.125.

Chudakov M.I. Promyshlennoye ispol'zovaniye lignina. [Industrial uses of lignin]. Moscow, 1972, 216 p. (in Russ.).

Zhou N., de Wass Thilakarathna W.P., He Q.S., Vasantha Rupasinghe H.P. Front. Energy Res., 2022, vol. 9, arti-cle 758744. DOI: 10.3389/fenrg.2021.758744.

Fache M., Boutevin B., Caillol S. ACS sustainable chemistry & engineering, 2016, vol. 4, no. 1, pp. 35–46. DOI: 10.1021/acssuschemeng.5b01344.

Harvey B.G., Guenthner A.J., Meylemans H.A., Haines S.R.L., Lamison K.R., Groshens T.J., Cambrea L.R., Da-visa M.C., Lai W.W. Green Chemistry, 2015, vol. 17, no. 2, pp. 1249–1258. DOI: 10.1039/C4GC01825G.

Tarabanko V.E., Tarabanko N. International journal of molecular sciences, 2017, vol. 18, no. 11, pp. 2421. DOI: 10.3390/ijms18112421.

Koropachinskaya N.V., Tarabanko V.Ye., Chernyak M.Yu. Khimiya Rastitel'nogo Syr'ya, 2003, no. 2, pp. 9–13. (in Russ.).

Peng F., Habibu A., Delavault A., Engel U., Rudat J. Catalysts, 2021, vol. 11, no. 11, pp. 1310. DOI: 10.3390/catal11111310.

Brodin I., Sjöholm E., Gellerstedt G. Holzforschung, 2009, vol. 63, no. 3, pp. 290–297. DOI: 10.1515/HF.2009.049.

Sudo K., Shimizu K. Journal of applied polymer science, 1992, vol. 44, no. 1, pp. 127–134. DOI: 10.1002/app.1992.070440113.

Brodin I., Ernstsson M., Gellerstedt G., Sjöholm E. Holzforschung, 2012, vol. 66, no. 2, pp. 141–147. DOI: 10.1515/HF.2011.133.

Seto C., Chang B.P., Tzoganakis C., Mekonnen T.H. International Journal of Biological Macromolecules, 2021, vol. 185, pp. 629–643. DOI: 10.1016/j.ijbiomac.2021.06.185.

Lin M., Yang L., Zhang H., Xia Y. Industrial Crops and Products, 2021, vol. 174, article 114212. DOI: 10.1016/j.indcrop.2021.114212.

Patent 8226963B2 (US). 2012.

Wilkins R.M. Polym. Int., 1983, vol. 15, no. 4, pp. 177–178. DOI: 10.1002/pi.4980150407.

Corey A., Wamsley K.G.S., Winowiski T.S., Moritz J.S. J. Appl. Poult. Res., 2014, vol. 23, no. 3, pp. 418–428. DOI: 10.3382/japr.2013-00916.

Lin J., Wu X., Xie S., Chen L., Zhang Q., Deng W., Wang Y. ChemSusChem., 2019, vol. 12, no. 22, pp. 5023–5031. DOI: 10.1002/cssc.201902355.

Yu B., Fan G., Zhao S., Lu Y., He Q., Cheng Q., Yan J., Chai B., Song G. Applied Biological Chemistry, 2021, vol. 64, no. 1, pp. 1–13. DOI: 10.1186/s13765-020-00579-x.

Duval A., Vidal D., Sarbu A., Rene W., Avérous L. Materials Today Chemistry, 2022, vol. 24, article 100793. DOI: 10.1016/j.mtchem.2022.100793.

Haridevan H., Evans D.A.C., Ragauskas A.J., Martin D.J., Annamalai P.K. Green Chemistry, 2021, vol. 23, no. 22, pp. 8725–8753. DOI: 10.1039/D1GC02744A.

Liu G., Jin C., Huo S., Kong Z., Chu F. International Journal of Biological Macromolecules, 2021, vol. 193, pp. 1400–1408. DOI: 10.1016/j.ijbiomac.2021.10.203.

Van de Velde N., Javornik S., Sever T., Štular D., Šobak M., Štirn Ž., Likozar B., Jerman I. Polymers, 2021, vol. 13, no. 22, pp. 3879. DOI: 10.3390/polym13223879.

Hanson K.G., Lin C.H., Abu-Omar M.M. Polymer, 2021, vol. 233, article 124202. DOI: 10.1016/j.polymer.2021.124202.

Jin H., Jia W., Sheng X., Niu M., Shi H. China Pulp & Paper, 2021, vol. 40, no. 10, pp. 108–119. DOI: 10.11980/j.issn.0254-508X.2021.10.016.

Pinto J.A., Fernandes I.P., Pinto V.D., Gomes E., Oliveira C.F., Pinto P.C.R., Mesquita L., Piloto P., Rodrigues A.E., Barreiro M.F. Energies, 2021, vol. 14, no. 13, pp. 3825. DOI: 10.3390/en14133825

Lignin Products – Metgen. URL: https://www.metgen.com/lignin-products.

LigniOx. URL: https://www.fortum.com/media/2020/06/fortum-bio2x-and-ligniox-consortium-aim-commercialize-concrete-superplasticizers-based-lignin.

Published
2023-06-26
How to Cite
1. Kozhevnikov A. Y., Shestakov S. L., Sypalova Y. A. ISSUES OF THE STRUCTURAL ORGANIZATION OF LIGNIN AND PROSPECTS FOR ITS PROCESSING // chemistry of plant raw material, 2023. № 2. P. 5-26. URL: http://journal.asu.ru/cw/article/view/11737.
Section
Reviews