ULTRASONIC CAVITATION EFFECT ON THE FATTY ACID COMPOSITION OF LINSEED OIL-BASED EMULSIONS
UDC 54.061
Abstract
Ultrasonic homogenization is a promising method of emulsion formation. Linseed oil containing polyunsaturated fatty acids in the optimal ratio was used as a control sample and the fat base of the emulsions. The effect of ultrasonic treatment can lead to a change in the percentage of fatty acids due to the acceleration and initiation of several chemical reactions. To assess the feasibility of using ultrasound in food production, the fatty acid composition of natural linseed oil and emulsions obtained from it, treated by ultrasound with different durations were studied. The study monitored the formation of radicals since increasing temperature and pressure during the collapse of cavitation bubbles initiates the formation of free hydrogen H- and hydroxyl OH- radicals within and next to them. These may initiate the oxidation of bioorganic compounds in the food product. The research results show that emulsions exposure to the ultrasound at a frequency of 20 kHz for 10, 20 and 30 minutes are capable to maintain the ratio of fatty acids while obtaining a homogeneous, finely dispersed and stable food emulsion. Deviations in the values characterizing the fatty acids content in the emulsions treated by ultrasound for 10, 20 and 30 minutes as compared with the control sample – linseed oil are insignificant (0.02±0.015% to 0.83±0.015). Using the method of electron paramagnetic resonance, the absence of free radicals was established both in the control sample – flax oil, and in emulsions obtained on its basis, homogenized using ultrasonic exposure.
Downloads
Metrics
References
Maa Y.F., Hsu C.C. Pharmaceutical Development and Technology, 1999, vol. 4(2), pp. 233–240. DOI: 10.1081/pdt-100101357.
Mason T.J. Ultrasonics, 1992, vol. 30(3), pp. 192–196. DOI: 10.1016/0041-624X(92)90072-T.
Canselier J., Jean J., Delmas H., Wilhelm A.M., Abismail B. Journal of Dispersion Science and Technology, 2002, vol. 23 (1–3), pp. 333–349. DOI: 10.1080/01932690208984209.
Abismail B., Canselier A., Wilhelm M., Delmas H., Gourdon C. Ultrason Sonochem., 1999, vol. 6 (1–2), pp. 75–83. DOI: 10.1016/s1350-4177(98)00027-3.
Taylor G.I. The scientific papers of GI Taylor. Cambridge: Cambridge University Press, 1963, vol. 3, pp. 457–464.
Khmelev V.N., Golykh R.N., Shalunov A.V., Khmelev S.S., Karzakova K.A. 15th International Conference of Young Specialist on Micro/Nanotechnologies and Electron Devices. Novosibirsk, 2014, pp. 203–207. DOI: 10.1109/EDM.2014.6882511.
Khmelev V.N., Golykh R.N., Khmelev S.S., Karzakova K.A. Nauchno-tekhnicheskiy vestnik Povolzh'ya, 2013, no. 2, pp. 249–251. (in Russ.).
Alegria A.E., Lion Y., Kondo T., Riesz P. J. Phys. Chem., 1989, vol. 93(12), pp. 4908–4913. DOI: 10.1021/j100349a046.
Abismail B., Conselier J.P., Wilhelm A.M., Delma H., Gourdon C. Ultrason Sonochem., 2000, vol. 7, pp. 187–192. DOI: 10.1016/s1350-4177(00)00040-7.
Krishna C.M., Kondo T., Riesz P. International Journal of Radiation Applications and Instrumentation. Part C. Radia-tion Physics and Chemistry, 1988, vol. 32(1), pp. 121–128. DOI: 10.1016/1359-0197(88)90025-2.
Mondello L., Tranchida P.Q., Stanek V., Jandera P., Dugo G., Dugo P. Journal of Chromatography A, 2005, vol. 1086 (1–2), pp. 91–98. DOI: 10.1016/j.chroma.2005.06.017.
Stein J., Kulemeier J., Lembcke B., Caspary W.F. Journal of Chromatography A, 1992, vol. 576(1), pp. 53–61. DOI: 10.1016/0378-4347(92)80174-o.
Nishiyama-Naruke A., Souza J.A., Carnel M., Curi R. Analytical Letters, 1998, vol. 31, pp. 2565–2576. DOI: 10.1080/00032719808005325
Van Eijk H.M., Bloemen J.G., Dejong C.H. Journal of Chromatography B, 2009, vol. 877(8–9), pp. 719–724. DOI: 10.1016/j.jchromb.2009.01.039.
Nguyen H.T.D., Ramli A., Kee L.M. Journal of the Japan Institute of Energy, 2017, vol. 96(12), pp. 532–537. DOI: 10.3775/jie.96.532.
Bravi E., Perretti G., Montanari L. Journal of Chromatography A, 2006, vol. 1134, pp. 210–214. DOI: 10.1016/j.chroma.2006.09.007
Guo H., Hu C., Qian J., Wu. D. Journal of the American Oil Chemists' Society, 2012, vol. 89, pp. 183–187. DOI: 10.1007/s11746-011-1898-5.
Rao M.S, Hidajat K., Ching C.B. Journal of Chromatographic Science, 1995, vol. 33, pp. 9–21. DOI: 10.1093/chromsci/33.1.9.
Ueno Y., Matsunaga H., Umemoto K., Nishijima K. Chemical and Pharmaceutical Bulletin, 1999, vol. 47(10), pp. 1375–1379. DOI: 10.1248/cpb.47.1375.
Wang F.H., Xiong X.J., Guo X.F., Wang H., Zhang H.S. Journal of Chromatography A, 2013, vol. 1291, pp. 84–91. DOI: 10.1016/j.chroma.2013.03.062.
Sun C., Zhao Y.Y., Curtis J.M. Analytica Chimica Acta, 2013, vol. 762, pp. 68–75. DOI: 10.1016/j.aca.2012.12.012.
Gaudin K., Chaminade P., Baillet A. Journal of Separation Science, 2004, vol. 27, pp. 41–46. DOI: 10.1002/jssc.200301622.
Rudakov O.B. Khimija rastitel'nogo syr'ja, 2001, no. 4, pp. 77–82. (in Russ.).
Koroleva M.Y., Yurtov E.V. Russian Chemical Reviews, 2012, vol. 81(1), pp. 21–43. DOI: 10.1070/RC2012v081n01ABEH004219.
Piskarev I.M., Ivanova I.P., Samodelkin A.G., Ivashchenko M.N. Iniciirovanie i issledovanie svobodno-radikal'nyh processov v biologicheskih eksperimentah. [Initiation and study of free radical processes in biological experiments]. Nizhny Novgorod, 2016, 106 p. (in Russ.).
Elektronnyj Paramagnitnyj Rezonans Primenenie v Medicine. Elektronnyj Paramagnitnyj Rezonans. Faktory, Vliyay-ushchie na Celesoobraznost' Ispol'zovaniya Metoda EPR [Electronic Paramagnetic Resonance Application in Medicine. Electronic Paramagnetic Resonance. Factors Influencing the Feasibility of Using the EPR Method]. URL: https://kadet-mvd.ru/pelevin-victor/elektronnyi-paramagnitnyi-rezonans-primenenie-v-medicine.html. (in Russ.).
Yu X., Tang Y., Liu P., Xiao L., Liu L., Shen R., Deng Q., Yao P. Journal of Agricultural and Food Chemistry, 2017, vol. 65(44), pp. 9635–9646. DOI: 10.1021/acs.jafc.7b03325.
Bykov M.I., Esaulenko E.E., Basov A.A. Eksperimental'naya i klinicheskaya gastroenterologiya, 2015, no. 6(118), pp. 53–56. (in Russ.).
Lisovaya E.V., Viktorova E.P., Borodkina A.V. Tekhnologii pishchevoy i pererabatyvayushchey promyshlennosti APK – produkty zdorovogo pitaniya, 2015, vol. 2(6), pp. 65–71. (in Russ.).
GOST 30418-96. Masla Rastitel'nye. Metod Opredeleniya Zhirnokislotnogo Sostava. [GOST 30418-96. Vegetable Oils. Method of Fatty Acid Composition Determination]. Moscow, 1998, 7 p. (in Russ.).
Copyright (c) 2023 chemistry of plant raw material
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.