THE STIMULATING PROPERTIES OF SPRUCE WOOD GREENERY EXTRACT OBTAINED IN ACCORDANCE WITH THE PRINCIPLES OF "GREEN TECHNOLOGY"

UDC 54.062+ 582.47+543.64+ 630*232.32+66.061

  • Tatyana Vladimirovna Khurshkainen Institute of Chemistry Komi Scientific Center Ural Branch RAS Email: hurshkainen@chemi.komisc.ru
  • Svetlana Karlenovna Stetsenko Botanical Garden, Ural Branch of the Russian Academy of Sciences https://orcid.org/0000-0002-4885-3817 Email: stets_s@mail.ru
  • Elena Mikhailovna Andreeva Botanical Garden, Ural Branch of the Russian Academy of Sciences https://orcid.org/0000-0003-2651-2541 Email: e_m_andreeva@mail.ru
  • Aleksei Olegovych Shkurikhin Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences https://orcid.org/0000-0002-6754-4622 Email: ashkurikhin@yandex.ru
  • Gennadiy Grigorievich Terekhov Botanical Garden, Ural Branch of the Russian Academy of Sciences https://orcid.org/0000-0002-2312-9224 Email: terekhov_g_g@mail.ru
  • Alexander Vasilevich Kuchin Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences https://orcid.org/0000-0003-4322-7961 Email: kutchin-av@chemi.komisc.ru
Keywords: extraction, plant biostimulants, forest nurseries, seedlings, Pinus sylvestris, Picea abies

Abstract

The article is devoted to the study of the composition and biological activity of an extract obtained from spruce wood greenery using an environmentally safe "green technology" method of extraction with an aqueous-alkaline solution. The content of neutral compounds (sesquiterpenoids, diterpenoids, polyprenols, and sitosterols) and acidic components (fatty and phenolic acids) in the extract was determined.

The biological activity of spruce extract as a growth stimulant when growing planting material of Pinus sylvestris seedlings in forest nurseries of the Ural region was assessed. Soaking pine seeds in an aqueous solution of the spruce extract is performed for 6 hours at room temperature. The stimulating effect of the extract is shown when growing pine seedlings in forest nurseries, with different granulometric and agrochemical compositions of the soil. An increase in the growth parameters and phytomass of seedlings was established when growing on medium-loamy soil and light loam.

The use of a biostimulant made of wood greenery for growing seedlings will reduce the chemical load on the arable soil of forest agrocenosis and will significantly contribute to the development and application of "green" technologies in forestry.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Tatyana Vladimirovna Khurshkainen , Institute of Chemistry Komi Scientific Center Ural Branch RAS

Candidate of Chemical Sciences, Senior Research Fellow

Svetlana Karlenovna Stetsenko, Botanical Garden, Ural Branch of the Russian Academy of Sciences

Candidate of Biological Sciences, Research Scientist

Elena Mikhailovna Andreeva, Botanical Garden, Ural Branch of the Russian Academy of Sciences

Candidate of Biological Sciences, Senior Research Fellow

Aleksei Olegovych Shkurikhin, Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Candidate of Biological Sciences, Senior Research Fellow

Gennadiy Grigorievich Terekhov, Botanical Garden, Ural Branch of the Russian Academy of Sciences

Doctor of Agricultural Sciences, Leading Research Fellow

Alexander Vasilevich Kuchin, Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences

Doctor of Chemical Sciences, Academician of the Russian Academy of Sciences

References

Tanase C., Talmaciu A.I., Bara I.C., Boz I., Volf I. et al. BioResources, 2018, vol. 13(2), pp. 3994–4007. DOI: 10.15376/biores.13.2.3994-4007.

Egorova A.V., Chernobrovkina N.P., Robonen E.V. Khimiya rastitel'nogo syr'ya, 2017, no. 2, pp. 171–180. (in Russ.).

Popko M., Michalak I., Wilk R., Gramza M., Chojnacka K. et al. Molecules, 2018, vol. 23, pp. 470–482. DOI: 10.3390/molecules23020470.

Ryabchinskaya T.A., Zimina T.V. Agrokhimiya, 2017, no. 12, pp. 62–92. (in Russ.).

Arioli T., Mattner S.W., Winberg P.C. Journal of Applied Phycology, 2015, vol. 27(5), pp. 2007–2015. DOI: 10.1007/s10811-015-0574-9.

Canellas L.P., Olivares F.L., Aguiar N.O., Jones D.L., Nebbioso A. et al. Scientia Horticulturae, 2015, vol. 196, pp. 15–27. DOI: 10.1016/j.scienta.2015.09.013.

Calvo P., Nelson L., Kloepper J.W. Plant and Soil, 2014, vol. 383, pp. 3–41. DOI: 10.1007/s11104-014-2131-8.

Shekhar Sharma H.S., Fleming C., Selby C., Rao J.R., Martin T. Journal of Applied Phycology, 2014, vol. 26(1), pp. 465–490. DOI: 10.1007/s10811-013-0101-9.

Metsämuuronen S., Siren H. Journal of Bioprocessing and Biotechniques, 2014, vol. 4, 167. DOI: 10.4172/2155-9821.1000167.

Kamaityte-Bukelskiene L., Loziene K., Labokas J. Molecules, 2021, vol. 26, 2138. DOI: 10.3390/molecules26082138.

Lamotkin S.A., Akhramovich T.I., Sakovich A.V., Budkovskaya D.A. Trudy BGTU. Ser. 2, Khimicheskiye tekhnolo-gii, biotekhnologii, geoekologiya, 2021, no. 2(247), pp. 94–99. (in Russ.).

Metsamuuronen S., Siren H. Phytochemistry Reviews, 2019, vol. 18, pp. 623–664. DOI: 10.1007/s11101-019-09630-2.

Azmir J., Zaidul I.S.M., Rahman M.M., Sharif K.M., Mohamed A. et al. Journal of Food Engineering, 2013, vol. 117, pp. 426–436. DOI: 10.1016/ j.jfoodeng.2013.01.014.

Co M., Fagerlund A., Engman L., Sunnerheim K., Sjöberg Per J.R. et al. Phytochemical Analysis, 2012, vol. 23, pp. 1–11. DOI: 10.1002/pca.1316.

Nastic N., Gavaric A., Vladic J., Vidovic S. Journal of Agronomy, Technology and Engineering Management, 2020, vol. 3(3), pp. 437–447.

Conde E., Díaz-Reinoso B., Moure A., Hemming J., Willför S.M. et al. III Iberoamerican Conference on Supercritical Fluids. Cartagena de Indias, Colombia, 2013.

Rombaut N., Tixier A.-S., Bily A., Chemat F. Biofuels, Bioproducts and Biorefining, 2014, vol. 8, pp. 530–544. DOI: 10.1002/bbb.1486.

Talmaciu A.I., Ravber M., Volf I., Knez Z., Popa V.I. The Journal of Supercritical Fluids, 2016, vol. 117, pp. 243–251. DOI: 10.1016/j.supflu.2016.07.001.

Nikonova N.N., Hurshkainen T.V., Kuchin A.V., Shevchenko O.G. Holzforschung, 2022, vol. 76(3), pp. 276–284. DOI: 10.1515/hf-2021-0122.

Sprankle P., Meggit W., Penner D. Weed Science, 1975, vol. 23, pp. 229–234. DOI: 10.1017/S0043174500052929.

Freiberg I.A., Stetsenko S.K. Lesovedenie, 2017, no. 1, pp. 39–44. (in Russ.).

Kopaczyk J.M., Warguła J., Jelonek T. Environmental and Experimental Botany, 2020, vol. 180. 104197. DOI: 10.1016/j.envexpbot.2020.104197.

Vanaga I., Gubernator J., Nakurte I., Kletnieks U., Muceniece R. et al. Molecules, 2020, vol. 25, 1801. DOI: 10.3390/molecules25081801.

Aparicio V.C., Gerónimo E., Marino D., Primost J., Carriquiriborde P. et al. Chemosphere, 2013, vol. 93(9), pp. 1866–1873. DOI: 10.1016/j.chemosphere. 2013.06.041.

Published
2024-06-18
How to Cite
1. Khurshkainen T. V., Stetsenko S. K., Andreeva E. M., Shkurikhin A. O., Terekhov G. G., Kuchin A. V. THE STIMULATING PROPERTIES OF SPRUCE WOOD GREENERY EXTRACT OBTAINED IN ACCORDANCE WITH THE PRINCIPLES OF "GREEN TECHNOLOGY" // chemistry of plant raw material, 2024. № 2. P. 420-428. URL: http://journal.asu.ru/cw/article/view/12689.
Section
Application