COMPARATIVE CHARACTERISTICS OF THE LOW MOLECULAR WEIGHT METABOLOME OF MACROPHYTES IN DIFFERENT WATER BODIES IN THE WATER AREA OF THE KANDALAKSHA BAY OF THE WHITE SEA

UDК 574.5+(581.19: 547.9+543.8)

  • Elizaveta Yaroslavovna Yavid Institute of Lake Science of the Russian Academy of Sciences, a separate subdivision of the St. Petersburg Federal Research Center of the Russian Academy of Sciences https://orcid.org/0000-0002-8049-4156 Email: eyavid@mail.ru
  • Vlada Vyacheslavovna Khodonovich 1. St. Petersburg Branch of the FGBNU “VNIRO” (“GOSNIORKh” named after L.S. Berg); 2. Institute of Lake Science of the Russian Academy of Sciences, a separate division of the St. Petersburg Federal Research Center of the Russian Academy of Sciences https://orcid.org/0000-0002-3326-9773 Email: vapity94@mail.ru
  • Yulia Viktorovna Krylova 1. Institute of Biology of Inland Waters of the Russian Academy of Sciences named after I.D. Papanin; 2. Institute of Lake Science of the Russian Academy of Sciences, a separate subdivision of the St. Petersburg Federal Research Center of the Russian Academy of Sciences http://orcid.org/0000-0002-4274-2358 Email: juliakrylova@mail.ru
  • Evgeny Aleksandrovich Kurashov 1) Институт озероведения Российской академии наук; 2) Санкт-Петербургский государственный университет http://orcid.org/0000-0002-4486-2804 Email: evgeny_kurashov@mail.ru
  • Roman Evgenievich Smagin St. Petersburg State University https://orcid.org/0000-0002-6377-9176 Email: rsmagin@yandex.ru
Keywords: macrophytes, low molecular weight metabolome, low molecular weight organic compounds, lake habitats, marine habitats, Kandalaksha Bay, White Sea

Abstract

The Kandalaksha Bay of the White Sea underwent a first-of-its-kind comparative examination of the composition of essential oils of structure-forming macrophytes growing in freshwater and saltwater habitats. The essential oils of the aquatic macrophytes Nuphar lutea (L.) Sm., Ruppia maritima L., Zostera marina L., Fucus vesiculosus L., and Ascophyllum nodosum (L.) Le Jolis were obtained by steam hydrodistillation using the Clevenger apparatus from dried plants. Gas chromatography-mass spectrometry (GC/MS complex SHIMADZU GCMS-QP2010 Ultra) was used to analyze the qualitative and quantitative composition of LMWOCs (low molecular weight organic compounds). The component composition of the low molecular weight metabolome (LM) of macrophytes was shown to depend on both plant species specificity and plant habitat conditions (hydrological features, trophic state). More LMWOCs are found in plants from freshwater habitats than from marine ones. The investigated plants had only a few major compounds, ranging in number from 4 to 14. They accounted for between 70 and 83% of the overall concentration of all compounds in freshwater N. lutea and between 82 and 95% of the total concentration of LMWOCs in marine macrophytes. The most significant (% of the total essential oil) main components in macrophytes were carboxylic acids, specifically hexadecanoic, tetradecanoic, linoleic, and linolenic. The outcomes gained proved that the presence of carboxylic acids is a sign of a healthy macrophyte environment. The composition of LM of plants from northern habitats (marine and freshwater) contains high total concentrations of LMWOCs (including valuable ones from the perspective of economic use), making it possible to consider them as a valuable natural renewable resource for obtaining raw materials for various economic uses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Elizaveta Yaroslavovna Yavid, Institute of Lake Science of the Russian Academy of Sciences, a separate subdivision of the St. Petersburg Federal Research Center of the Russian Academy of Sciences

Junior researcher of the Laboratory of Hydrobiology of the Institute of Lake Science of the Russian Academy of Sciences, a separate division of the St. Petersburg Federal Research Center of the Russian Academy of Sciences

Vlada Vyacheslavovna Khodonovich, 1. St. Petersburg Branch of the FGBNU “VNIRO” (“GOSNIORKh” named after L.S. Berg); 2. Institute of Lake Science of the Russian Academy of Sciences, a separate division of the St. Petersburg Federal Research Center of the Russian Academy of Sciences

Junior researcher of the Laboratory of Hydrobiology of the Institute of Lake Science of the Russian Academy of Sciences, a separate division of the St. Petersburg Federal Research Center of the Russian Academy of Sciences$; Senior Specialist of the Laboratory of Fisheries Ecology, St. Petersburg Branch of the FGBNU “VNIRO” (“GOSNIORKh” named after L.S. Berg)

Yulia Viktorovna Krylova, 1. Institute of Biology of Inland Waters of the Russian Academy of Sciences named after I.D. Papanin; 2. Institute of Lake Science of the Russian Academy of Sciences, a separate subdivision of the St. Petersburg Federal Research Center of the Russian Academy of Sciences

Ph.D., Associate Professor, 1) Leading Specialist, Laboratory of higher aquatic vegetation, Institute of Biology of Inland Waters of the Russian Academy of Sciences named after I.D. Papanin, Borok village, Nekouzsky district, Yaroslavl region, Russia 2) leading researcher, Laboratory of Hydrobiology of the Institute of Lake Science of the Russian Academy of Sciences, a separate subdivision of the St. Petersburg Federal Research Center of the Russian Academy of Sciences

Evgeny Aleksandrovich Kurashov, 1) Институт озероведения Российской академии наук; 2) Санкт-Петербургский государственный университет

Doctor of Biological Sciences, Professor, Head of the Laboratory of Hydrobiology, Institute of Lake Science of the Russian Academy of Sciences; Professor of the Department of Environmental Safety and Sustainable Development of Regions, St. Petersburg State University

Roman Evgenievich Smagin, St. Petersburg State University

Candidate of Geographical Sciences, senior lecturer at the Department of Oceanology

References

Fink P. Marine and Freshwater Behaviour and Physiology, 2007, vol. 40, no. 3, pp. 155–168. DOI: 10.1080/10236240701602218.

Nezbrytska I., Usenko O., Konovets I., Leontieva T., Abramiuk I., Goncharova M., Bilous O. Water, 2022, vol. 14, ar-ticle 1727. DOI: 10.3390/w14111727.

Cowan M.M. Clinical Microbiology Reviews, 1999, vol. 12, no. 4, pp. 564–582. DOI: 10.1128/cmr.12.4.564.

Asakawa Y., Kenmoku H. Handbook of Dietary Phytochemicals. Springer, 2021, pp. 1–195. DOI: 10.1007/978-981-13-1745-3_18-1.

Krylova J., Kurashov E. Algae Biotechnology: Integrated Algal Engineering for Bioenergy, Bioremediation, and Bio-medical Applications. Elsevier, 2022, pp. 347–376. DOI: 10.1016/B978-0-323-90476-6.00021-2.

Spetsifikatsii i standarty na pishchevyye produkty, pishchevyye dobavki i pr. v sootvetstvii s Zakonom o pishche-voy sanitarii (vyderzhka) 2010 goda. [Specifications and standards for food products, food additives, etc. in accordance with the Food Sanitation (Excerpt) Act, 2010]. JETRO, 2011, 189 p. (in Russ.).

Śliwińska-Wilczewska S., Wiśniewska K., Konarzewska Z., Cieszyńska A., Felpeto A.B., Lewandowska A.U., Latała A. Science of the Total Environment, 2021, vol. 773, article 145681. DOI: 10.1016/j.scitotenv.2021.145681.

Varzugina M.A., Makarchuk R.N., Yavorskiy A.S., Nikolayenko O.A., Kuranova L.K. Izvestiya vysshikh uchebnykh zavedeniy. Arkticheskiy region, 2015, no. 1, pp. 48–53. (in Russ.).

Priyanka K.R., Rajaram R. Sivakumar S.R. Biomass Conversion and Biorefinery, 2022. DOI: 10.1007/s13399-022-03134-4.

GOST 24027.2-80. Syr'ye lekarstvennoye rastitel'noye. Metody opredeleniya vlazhnosti, soderzhaniya zoly, ekstraktivnykh i dubil'nykh veshchestv, efirnogo masla. [GOST 24027.2-80. Herbal medicinal raw materials. Methods for determining humidity, ash content, extractives and tannins, essential oil]. Moscow, 1999, 10 p. (in Russ.).

Tkachev A.V. Issledovaniye letuchikh veshchestv rasteniy. [Research on plant volatiles]. Novosibirsk, 2008, 969 p. (in Russ.).

Jaccard P. Bull. Soc. Vaudoise Sci. Natur., 1901, vol. 37, no. 140, pp. 241–272.

Czekanowski J. Anthropol. Anz., 1922, vol. 9, pp. 227–249.

Sorensen T.A. Kongelige Danske Videnskabernes Selskabs Biologiske Skrifter, 1948, vol. 5, pp. 1–34.

Kantrud H.A. Classification and Distribution – Wigeongrass (Ruppia maritima L.): A literature review. U.S. Fish and Wildlife Service, 1991. 58 p.

Obluchinskaya Ye.D. Khimiya Rastitel'nogo Syr'ya, 2011, no. 3, pp. 47–51. (in Russ.).

Kurashov Ye.A., Krylova Yu.V., Egorova A.A., Khamitov A.S., Khodonovich V.V., Yavid Ye.Ya. Voda: khimiya i ekologiya, 2018, no. 1-3(114), pp. 68–79. (in Russ.).

Sun S.-M., Chung G.-H., Shin T.-S. Journal of Applied Phycology, 2011, vol. 24, no. 5, pp. 1003–1013. DOI: 10.1007/s10811-011-9724-x.

Kurashov Ye.A., Fedorova Ye.V., Krylova Yu.V. Rossiyskiy zhurnal prikladnoy ekologii, 2018, no. 4, pp. 56–61. (in Russ.).

Krylova Yu.V., Kurashov Ye.A., Rusanov A.G. Trudy Karel'skogo nauchnogo tsentra RAN, 2020, no. 4, pp. 95–114. (in Russ.).

Inoue Y., Hada T., Shiraishi A., Hirose K., Hamashima H., Kobayashi S. Antimicrob. Agent. Chemother., 2005, vol. 49, pp. 1770–1774. DOI: 10.1128/aac.49.5.1770-1774.2005

Hu H., Hong Y. Frontiers of Environmental Science & Engineering in China, 2008, vol. 2, no. 4, pp. 421–438. DOI: 10.1007/s11783-008-0070-4.

Forlani G., Occhipinti A., Bossi S., Bertea C.M., Varese C., Maffei M.E. J. Plant Physiol., 2011, vol. 168, no. 17, pp. 2041–2047. DOI: 10.1016/j.jplph.2011.06.014.

Conforti F., Menichini F., Formisano C., Rigano D., Senatore F., Arnold N. A., Piozzi F. Food Chemistry, 2009, vol. 116, no. 4, pp. 898–905. DOI: 10.1016/j.foodchem.2009.03.04.

Zou C., Li Z., Yu D. The Journal of Microbiology, 2010, vol. 48, no. 4, pp. 460–466. DOI: 10.1007/s12275-010-0068-z.

Fomenko S.E., Kushnerova N.F., Sprygin V.G., Drugova E.S., Lesnikova L.N., Merzlyakov V.Y., Momot T.V. Rus-sian Journal of Plant Physiology, 2019, vol. 66, no. 6, pp. 942–949. DOI: 10.1134/s1021443719050054.

Patent 2620164 (RU). 2017. (in Russ.).

Patent 2737139 (RU). 2020. (in Russ.).

Patent 2092049 (RU). 1997. (in Russ.).

FAO Food and Nutrition. Fats and fatty acids in human nutrition – report of an expert consultation. Rome, 2010, vol. 91, 180 p.

Serviere-Zaragoza E., Hurtado M.A., Manzano-Sarabia M., Mazariegos-Villarreal A., Reza M., Arjona O., Palacios E. Journal of Applied Phycology, 2014, vol. 27, no. 3, pp. 1297–1306. DOI: 10.1007/s10811-014-0415-2.

Kurashov E.A., Krylova J.V., Mitrukova G.G., Chernova A.M. Contemporary Problems of Ecology, 2014, vol. 7, no. 4, pp. 433–448. DOI: 10.1134/S1995425514040064.

Zerrifi S.E.A., Mugani R., Redouane E.M., El Khalloufi F., Campos A., Vasconcelos V., Oudra B. Archives of Micro-biology, 2021, vol. 203, pp. 31–44. DOI: 10.1007/s00203-020-02015-6.

Kurashov E., Krylova J., Protopopova E. Plankton Communities. IntechOpen, London, 2021. DOI: 10.5772/intechopen.95609.

Kumar G., Sharma J., Goswami R.K., Shrivastav A.K., Tocher D.R., Kumar N., Chakrabarti R. Front Nutr., 2022, vol. 9, article 869425. DOI: 10.3389/fnut.2022.869425.

Published
2024-02-17
How to Cite
1. Yavid E. Y., Khodonovich V. V., Krylova Y. V., Kurashov E. A., Smagin R. E. COMPARATIVE CHARACTERISTICS OF THE LOW MOLECULAR WEIGHT METABOLOME OF MACROPHYTES IN DIFFERENT WATER BODIES IN THE WATER AREA OF THE KANDALAKSHA BAY OF THE WHITE SEA // chemistry of plant raw material, 2024. № 1. P. 211-224. URL: http://journal.asu.ru/cw/article/view/13005.
Section
Low-molecular weight compounds