VARIABILITY OF BIOLOGICALLY ACTIVE SUBSTANCES CONTENT IN EMPETRUM HERMAPHRODITUM HAGER. LEAVES AND FRUITS UNDER INDUSTRIAL POLLUTION IN THE KOLA PENINSULA

UDK 581.192.2

  • Lidiya Nikolaevna Sereda Laboratory for Medical and Biological Technologies, Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences Email: sundukpandory87@mail.ru
  • Vladimir Konstantinovich Zhirov Center for Medical and Biological Problems of Human Adaptation in the Arctic, Scientific Research Center for International Biology, KSC RAS Email: v_zhirov_1952@mail.ru
  • Nikita Sergeevich Tsvetov Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials named after. I.V. Tananaeva Federal Research Center Kola Scientific Center RAS Email: tsvet.nik@mail.ru
  • Svetlana Vitalievna Dragobuzhskaya Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials named after. I.V. Tananaeva Federal Research Center Kola Scientific Center RAS Email: s.drogobuzhskaia@ksc.ru
Keywords: Empetrum hermaphroditum, biologically active substances, technogenic pollution, ultrasound-assisted extraction, Arctic

Abstract

The crowberry Empetrum hermaphroditum Hager. is dominant shrubby hypoarctic species of native flora of the Arctic territory of the Russian Federation, belonging to the Ericaceae family. It is distributed in a wide ecological amplitude, has a significant phytomass, bears fruit profusely and grows throughout the Kola Peninsula. All parts of the studied plant are a source of a various phenolic compounds, which determines its significant pharmaceutical potential. An important factor, in addition to the extreme conditions of the Kola Peninsula, which enhances the synthesis of adaptogenic compounds, is pollution by wastes of copper-nickel production. In connection with the above, the aim of the work was to assess the temporal and spatial distribution of content of the secondary metabolites, synthesized by various organs of Empetrum hermaphroditum under industrial pollution. To assess the total content of polyphenols, flavonoids, total antioxidant and antiradical activity, the method of ultrasonic extraction with 60% ethanol was used. The temporal and spatial distribution of adaptogenic compounds is characterized, and a high content of polyphenolic components in the vegetative organs of the plant is noted. It has been established that the accumulation of pollutants by crowberry plants changes in the following order: leaves > green fruits > ripe fruits. The indicator and accumulative properties of leaves and green fruits of crow plants in relation to Mn were revealed. Extracts of vegetative organs of crow plants can be recommended as a promising source of polyphenolic components.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Lidiya Nikolaevna Sereda, Laboratory for Medical and Biological Technologies, Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences

junior researcher at the Laboratory of Medical and Biological Technologies

Vladimir Konstantinovich Zhirov, Center for Medical and Biological Problems of Human Adaptation in the Arctic, Scientific Research Center for International Biology, KSC RAS

Doctor of Biological Sciences, Corresponding Member of the Russian Academy of Sciences, Professor, Acting Director

Nikita Sergeevich Tsvetov, Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials named after. I.V. Tananaeva Federal Research Center Kola Scientific Center RAS

Candidate of Chemical Sciences, researcher

Svetlana Vitalievna Dragobuzhskaya, Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials named after. I.V. Tananaeva Federal Research Center Kola Scientific Center RAS

Candidate of Chemical Sciences, senior researcher, associate professor

References

Kashulina G.M. Pochvovedeniye, 2017, no. 7, pp. 860–873. DOI: 10.7868/S0032180X17070036. (in Russ.).

Kryuchkov V.V., Makarova T.D. Aerotekhnogennoye vozdeystviye na ekosistemy Kol'skogo Severa. [Aerotechnogenic impact on the ecosystems of the Kola North]. Apatity, 1989, 96 p. (in Russ.).

Cherepanov S.K. Sosudistyye rasteniya Rossii i sopredel'nykh gosudarstv (v predelakh byvshego SSSR). [Vascular plants of Russia and neighboring states (within the former USSR)]. St. Petersburg, 1995, 990 p. (in Russ.).

Ramenskaya M.L. Analiz flory Murmanskoy oblasti i Karelii. [Analysis of the flora of the Murmansk region and Kare-lia]. Leningrad, 1983, 216 p. (in Russ.).

Tsvetov N., Sereda L., Korovkina A., Artemkina N., Kozerozhets I., Samarov A. Biomass Conversion and Biorefinery, 2022, vol. 12, pp. 145–156. DOI: 10.1007/s13399-022-02299-2.

Lorion J., Small E. The Botanical Review, 2021, vol. 87(3), pp. 259–310. DOI: 10.1007/s12229-021-09248-0.

Bezverkhniaia E.A., Ermilova E.V., Kadyrova T.V., Krasnov E.A., Brazovskii K.S., Ponkratova A.O., Luzhanin V.G., Belousov M.V. Bezverkhniaia E. Advances in Traditional Medicine, 2023, vol. 23(3), pp. 659–672. DOI: 10.1007/s13596-021-00612-4.

Beydeman I.N. Metodika fenologicheskikh nablyudeniy pri geobotanicheskikh issledovaniyakh. [Methodology for phe-nological observations in geobotanical research]. Moscow; Leningrad, 1954, 130 p. (in Russ.).

Meier U., Bleiholder H., Buhr L., Feller C., Hacks H., Hess M., Lancashire P.D., Schnock U., Stauss R., Boom van den T., Weber E., Zwerger P. Journal für Kulturpflanzen, 2009, vol. 61, pp. 41–52. DOI: 10.5073/JfK.2009.02.01.

Meier U. Growth stages of mono- and dicotyledonous plants BBCH. Quedlinburg, 2018, 204 p. DOI: 10.5073/20180906-074619.

Gosudarstvennaya farmakopeya RF, XIV izd. [State Pharmacopoeia of the Russian Federation, XIV ed.]. Moscow, 2018. (in Russ.).

GOST 17.4.4.02-2017. Mezhgosudarstvennyy standart. Okhrana prirody. Pochvy. Metody otbora i podgotovki prob dlya khimicheskogo, bakteriologicheskogo, gel'mintologicheskogo analiza. [GOST 17.4.4.02-2017. Interstate standard. Protection of Nature. Soils. Methods of sampling and preparation of samples for chemical, bacteriological, helmintho-logical analysis]. Moscow, 2017, 10 p. (in Russ.).

Mingorance M.D., Valdés B., Oliva S.R. Environment International, 2007, vol. 33(4), pp. 514–520. DOI: 10.1016/j.envint.2007.01.005.

Serbula S.M., Miljkovic D.D., Kovacevic R.M., Ilic A.A. Ecotoxicology and Environmental safety, 2012, vol. 76, pp. 209–214. DOI: 10.1016/j.ecoenv.2011.10.009.

Slukovskaya M.V., Kremenetskaya I.P., Mosendz I.A., Ivanova T.K., Drogobuzhskaya S.V., Ivanova L.A., Novikov A.I., Shirokaya A.A. Environmental Geochemistry and Health, 2023, vol. 45(1), pp. 67–83. DOI: 10.1007/s10653-022-01263-3.

Kashulina G.M., Saltan N.V. Khimicheskiy sostav rasteniy v ekstremal'nykh usloviyakh lokal'noy zony kombinata «Severonikel'». [Chemical composition of plants in extreme conditions of the local zone of the Severonickel plant]. Apatity, 2008, 239 p. (in Russ.).

Kandziora-Ciupa M., Nadgórska-Socha A., Barczyk G., Ciepa R. Ecotoxicology, 2017, vol. 26, pp. 966–980. DOI: 10.1007/s10646-017-1825-0.

Kandziora-Ciupa M., Dabioch M., Nadgórska-Socha A. Biological Trace Element Research, 2022, vol. 200(9), pp. 4175–4185. DOI: 10.1007/s12011-021-02989-4.

Liu J., Shang W., Zhang X., Zhu Y., Yu K. Journal of Hazardous Materials, 2014, vol. 267, pp. 136–141. DOI: 10.1016/j.jhazmat.2013.12.051.

Kopylova L.V. Izvestiya Samarskogo nauchnogo tsentra RAN, 2010, vol. 12, no. 1-3, pp. 709–712. (in Russ.).

Pobilat A.Ye., Voloshin Ye.I. Mikroelementy v meditsine, 2017, vol. 18, no. 2, pp. 43–47. DOI: 10.19112/2413-6174-2017-18-2-43-47. (in Russ.).

Published
2024-06-14
How to Cite
1. Sereda L. N., Zhirov V. K., Tsvetov N. S., Dragobuzhskaya S. V. VARIABILITY OF BIOLOGICALLY ACTIVE SUBSTANCES CONTENT IN EMPETRUM HERMAPHRODITUM HAGER. LEAVES AND FRUITS UNDER INDUSTRIAL POLLUTION IN THE KOLA PENINSULA // chemistry of plant raw material, 2024. № 2. P. 293-301. URL: http://journal.asu.ru/cw/article/view/13032.
Section
Low-molecular weight compounds