EFFICIENCY OF CONVERSION BY A COMPLEX OF HYDROLYTIC ENZYMES OF WHEAT BRAN BIOPOLYMERS

UDK 664.764:664.162.036.1-044.3

Keywords: wheat bran, enzymatic hydrolysis, carbohydrate-containing raw materials, hydrolytic enzymes, bioconversion, chromatography

Abstract

Introduction. An important aspect of the processing and pre-processing of cellulose raw materials (including bran) is to obtain a high content of reducing substances in the final product. Experimentally selected process parameters and optimization of pre-processing conditions of plant raw materials, in order to increase the amount of biologically valuable substances, will reduce the cost of the final product. In this work, the bioconversion of wheat bran polymers was carried out with hydrolytic enzyme preparations (ЕР).

Study objects and methods. The degree of biotransformation of plant polymers was evaluated on crushed wheat bran with enzyme preparations and their complexes by chemical analysis and HPLC chromatography.

Results and discussion The feedstock (wheat bran) was characterized by a low content of lignin (7.55%) and high pentosans (17.9%). The largest amount of reducing substances of hydrolysates was determined for ЕР Amilolux ATS – 0.23 g/g of raw materials, and its complexes Amilolux ATS and Celolux A – 0.29 g/g of raw materials. The inclusion of proteolytic action in the ЕР complex increases the amount of amine nitrogen (39.5 mg /g), reduces kinematic viscosity. A greater amount of mannose (56.0 mg/g of bran), but less pentose (4.1 mg/g of bran) of hydrolysates of enzymatically processed wheat bran was determined in comparison with chemical treatment.

Conclusions. Optimal parameters of enzymatic pretreatment of wheat bran for their conversion into target products of biosynthesis – biologically valuable carbohydrates have been determined, which is a promising direction of research and their practical use in the production of mannose, biofuels, chemicals and food additive.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Natalia Anatolyevna Pogorelova, Omsk State Agrarian University named after P.A. Stolypin

Candidate of Biological Sciences, senior researcher

Natalya Anatolyevna Sarnitskaya, Omsk State Agrarian University named after P.A. Stolypin

junior researcher

Dmitry Sergeevich Nardin, Omsk State Agrarian University named after P.A. Stolypin

Candidate of Economic Sciences, Head of the Research Department

References

Streimikyte P., Viskelis P, Viskelis J. International Journal of Molecular Sciences, 2022, vol. 23 (4), 2359. DOI: 10.3390/ijms23042359.

Iqbal Sh., Tirpanalan-Staben Ö., Franke K. Plants, 2022, vol. 11 (24), 3466. DOI: 10.3390/plants11243466.

Clifton-Brown J., Harfouche A., Casler M.D. et al. GCB Bioenergy, 2019, vol. 11 (1), pp. 118–151. DOI: 10.1111/gcbb.12566.

Wang L., Tian Y., Chen Y., Chen J. Cereal chemistry, 2022, vol. 99 (2), pp. 343–354. DOI: 10.1002/cche.10494.

Glaser S.J., Al-Rudainy B., Hatti-Kaul R., Galbe M. Industrial Crops and Products, 2023, vol. 195, 116405. DOI: 10.1016/j.indcrop.2023.116405.

Awasthi M.K., Tarafdar A., Gaur V.K. et al. International Journal of Food Microbiology, 2022, vol. 368, 109610. DOI: 10.1016/j.ijfoodmicro.2022.109610.

Germec M., Ozcan A., Turhan I. Industrial Crops and Products, 2019, vol. 139 (1), 111565. DOI: 10.1016/j.indcrop.2019.111565.

Pogorelova N.A., Gavrilova N.B., Rogachev Ye.A., Shchetinina Ye.M. Khraneniye i pererabotka sel'khozsyr'ya, 2020, no. 1, pp. 48–57. DOI: 10.36107/spfp.2020.228. (in Russ.).

Pogorelova N.A., Gavrilova N.B. Tekhnika i tekhnologiya pishchevykh proizvodstv, 2023, vol. 53, no. 1, pp. 49–59. DOI: 10.21603/2074-9414-2023-1-2414. (in Russ.).

Galbe M., Wallberg O. Biotechnology for Biofuels, 2019, vol. 12 (1), article 294. DOI: 10.1186/s13068-019-1634-1.

Weiss N.D., Felby C., Thygesen L.G. Biotechnology for Biofuels, 2019, vol. 12, article 3. DOI: 10.1186/s13068-018-1339-x.

Song L.-W., Qi J.-R., Liao J.-S., Yang X.-Q. Food Hydrocolloids, 2021, vol. 121 (2-3), 107015. DOI: 10.1016/j.foodhyd.2021.107015.

Ma M., Mu T. Food Chemistry, 2016, vol. 194, pp. 237–246. DOI: 10.1016/j.foodchem.2015.07.095.

Gavrilova K., Bychkov A., Bychkova E. et al. Foods and Raw Materials, 2019, vol. 7 (2), pp. 255–263. DOI: 10.21603/2308-4057-2019-2-255-263.

Santala O., Kiran A., Sozer N., Poutanen K., Nordlund E. Journal of Cereal Science, 2014, vol. 60 (2), pp. 448–456. DOI: 10.1016/j.jcs.2014.04.003.

Xiao Q., Weng H.F., Ni H., Hong Q.L., Lin K.H., Xiao A.F. Food Hydrocolloids, 2019, vol. 87, pp. 530–540. DOI: 10.1016/j.foodhyd.2018.08.041.

Chen H., Zhou X., Zhang J. Carbohydrate Polymers, 2014, vol. 111, pp. 567–575. DOI: 10.1016/j.carbpol.2014.05.033.

Zuorro A., Lavecchia R., González-Delgado Á.D., García-Martinez J.B., L’Abbate P. Processes, 2019, vol. 7 (11), ar-ticle 804. DOI: 10.3390/pr7110804.

Yazdi A.P.G., Barzegar M., Sahari M.A., Gavlighi H.A. Food Science Nutrition, 2018, vol. 7 (1), pp. 356–366. DOI: 10.1002/fsn3.900.

Domínguez-Rodríguez G., Marina M.L., Plaza M. Food Chemistry, 2021, vol. 339, 128086. DOI: 10.1016/j.foodchem.2020.128086.

Belmiro R.H., Oliveira L.D.C., Geraldi M.V., Junior M.R.M., Cristianini M. Innovative Food Science & Emerging Technologies, 2021, vol. 68 (6), 102608. DOI: 10.1016/j.ifset.2021.102608.

Phirom-On K., Apiraksakorn J. Food Bioscience, 2021, vol. 41 (2), 101083. DOI: 10.1016/j.fbio.2021.101083.

Ninga K.A., Desobgo Z.S.C., De S., Nso E.J. Heliyon, 2021, vol. 7 (10), e08141. DOI: 10.1016/j.heliyon.2021.e08141.

Cole M.R., Eggleston G., Gaines D.K., Heckemeyer M. Industrial Crops and Products, 2019, vol. 133 (32), pp. 142–150. DOI: 10.1016/j.indcrop.2019.03.012.

Klasson K.T., Cole M.R., Pancio B.T., Heckemeyer M. Industrial Crops and Products, 2022, vol. 176, 114370. DOI: 10.1016/j.indcrop.2021.114370.

Jeske S., Zannini E., Croninb M.F., Arendt E.K. Food & Function, 2018, vol. 9, pp. 3500–3508. DOI: 10.1039/C8FO00336J.

Obolenskaya A.V., Yel'nitskaya Z.P., Leonovich A.A. Laboratornyye raboty po khimii drevesiny i tsellyulozy. [Labor-atory work on the chemistry of wood and cellulose]. Moscow, 1991, 320 p. (in Russ.).

Lomovsky O.I., Lomovskiy I.O., Orlov D.V. Green Chemistry Letters and Reviews, 2017, vol. 10 (4), pp. 171–185. DOI: 10.1080/17518253.2017.1339832.

Barbosa F.C., Silvello M.A., Goldbeck R. Biotechnology Letters, 2020, vol. 42 (6), pp. 875–884. DOI: 10.1007/s10529-020-02875-4.

Bychkov A.L., Gavrilova K.V., Akimenko Z.A. et al. IOP Conference Series: Materials Science and Engineering. 3rd International Conference on New Material and Chemical Industry, 2019, vol. 479, 012001. DOI: 10.1088/1757-899X/479/1/012001.

Sapirstein H.D., Wang M., Beta T. LWT – Food Science and Technology, 2013, vol. 50 (1), pp. 336–342. DOI: 10.1016/J.LWT.2012.04.030.

Pogorelova N.A., Moliboga Ye.A., Sarnitskaya N.A. Vestnik Omskogo gosudarstvennogo agrarnogo universiteta, 2018, no. 4 (32), pp. 31–35. (in Russ.).

Radif Z.Kh., Anokhina Ye.P., Korneyeva O.S. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologiy, 2017, vol. 79, no. 3 (73), pp. 159–163. (in Russ.).

Published
2024-06-17
How to Cite
1. Pogorelova N. A., Sarnitskaya N. A., Nardin D. S. EFFICIENCY OF CONVERSION BY A COMPLEX OF HYDROLYTIC ENZYMES OF WHEAT BRAN BIOPOLYMERS // chemistry of plant raw material, 2024. № 2. P. 340-354. URL: http://journal.asu.ru/cw/article/view/13107.
Section
Biotechnology