ANTIVIRAL ACTIVITY OF POLYPHENOLS OF THE LEAVES OF SUMACH RHUS CORIARIA L.

UDC 547.982/83/84

  • Shavkat Ismailovich Salikhov A.S. Sadykov Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan
  • Alexey Michailovich Egorov M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Preparations of the Rus-sian Academy of Sciences (Polio Institute)
  • Yulia Igorevna Oshchepkova A.S. Sadykov Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan Email: joshepkova05@rambler.ru
  • Jamolitdin Fazlitdinovich Ziyavitdinov A.S. Sadykov Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences
  • Nodir Sharipovich Berdiev A.S. Sadykov Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences
Keywords: Rhus coriaria L., polyphenols, antiviral activity, inhibition

Abstract

The aim of this study is to improve the technology for obtaining the amount from the leaves of tannic sumac Rhus coriaria L. with an increase in the yield of the main individual polyphenols and to study the antiviral activity against the 3CLpro viral protease.

As a result of the research, the technology for obtaining the sum of components and the main individual polyphenols from the leaves of tannic sumac Rhus coriaria L. was improved. It was determined that with a change in the acid number of a 40% ethanol solution to 8.5, the content of active components in the total extract increases to 73.93%, increasing by 1.82 times in relation to the total extract obtained by the previously published method, and making up the maximum among all examples of obtaining the total extract. As a result of studying the inhibition of the main protease, it was shown that the substance and individual polyphenols obtained using the improved technology exhibit a higher percentage of inhibition of the main protease of the coronavirus, with IC50 values of 1.4-2.6 μm, show the presence of synergism in the inhibitory activity of the main components, manifested in increased inhibition of the main protease (Mpro) of SARS-CoV-2 in total and, thus, confirm the promise of use as a safe antiviral drug.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Shavkat Ismailovich Salikhov , A.S. Sadykov Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan

Academician, Doctor of Biological Sciences, Head of the Laboratory of Chemistry of Proteins and Peptides

Alexey Michailovich Egorov , M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Preparations of the Rus-sian Academy of Sciences (Polio Institute)

Academician, Doctor of Biological Sciences, Chief Researcher

Yulia Igorevna Oshchepkova , A.S. Sadykov Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan

Doctor of Chemical Sciences, Professor, Deputy Director for Science

Jamolitdin Fazlitdinovich Ziyavitdinov , A.S. Sadykov Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences

Doctor of Chemical Sciences, Professor, Head of the Laboratory of Cellular Technologies of Plant and Vegetable Crops

Nodir Sharipovich Berdiev , A.S. Sadykov Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences

PhD, senior researcher, doctoral student of of the Laboratory of Chemistry of Proteins and Peptides

References

Abdullah A.A., Abdullah R., Nazariah Z.A., Balakrishnan K.N., Abdullah F.F.J., Bala J.A., Mohd-Lila M.-A. Antivir. Chem. Chemother., 2018, vol. 26. DOI: 10.1177/2040206618811413.

Strasfeld L., Chou S. Infect. Dis. Clin. N. Am., 2010, vol. 24, pp. 413–437. DOI: 10.1016/j.idc.2010.01.001.

Irwin K.K., Renzette N., Kowalik T.F., Jensen J.D. Virus Evol., 2016, vol. 2, vew014. DOI: 10.1093/ve/vew014.

Ruskovska T., Maksimova V., Milenkovic D. Br. J. Nutr., 2020, vol. 123, pp. 241–254. DOI: 10.1017/S0007114519002733.

Forman H.J., Davies K.J., Ursini F. Free Radic. Biol. Med., 2014, vol. 66, pp. 24–35. DOI: 10.1016/j.freeradbiomed.2013.05.045.

Krga I., Tamaian R., Mercier S. et al. Free Radic. Biol. Med., 2018, vol. 124, pp. 364–379. DOI: 10.1016/j.freeradbiomed.2018.06.027.

Monfoulet L.E., Mercier S., Bayle D. et al. Free Radic. Biol. Med., 2017, vol. 112, pp. 109–120. DOI: 10.1016/j.freeradbiomed.2017.07.019.

Milenkovic D., Deval C., Dubray C., Mazur A., Morand C. PLoS One, 2011, vol. 6, e26669. DOI: 10.1371/journal.pone.0026669.

Rodriguez-Mateos A., Istas G., Boschek L. et al. J. Gerontol. A Biol. Sci. Med. Sci., 2019, vol. 74, pp. 967–976. DOI: 10.1093/gerona/glz047.

Lv Q., Zhang P., Quan P. et al. Microb Pathog., 2020, vol. 140, 103934. DOI: 10.1016/j.micpath.2019.103934.

Song M., Teng Z., Li M., Niu X., Wang J., Deng X. J. Cell Mol. Med., 2017, vol. 21, pp. 2586–2598. DOI: 10.1111/jcmm.13179.

Wu S., Huang J. Exp. Ther. Med., 2017, vol. 14, pp. 6099–6104. DOI: 10.3892/etm.2017.5337.

Gangehei L., Ali M., Zhang W., Chen Z., Wakame K., Haidari M. Phytomedicine, 2010, vol. 17, pp. 1047–1056. DOI: 10.1016/j.phymed.2010.03.016.

Uchide N., Toyoda H. Molecules, 2011, vol. 16, pp. 2032–2052. DOI: 10.3390/molecules23100000.

Dai J., Gu L., Su Y. et al. Int. Immunopharmacol., 2018, vol. 54, pp. 177–187. DOI: 10.1016/j.intimp.2017.11.009.

Han S., Xu J., Guo X., Huang M. Clin Exp. Pharmacol. Physiol., 2018, vol. 45, pp. 84–93. DOI: 10.1111/1440-1681.12848.

Liu Z., Ying Y. Front. Cell Dev. Biol., 2020, vol. 8, p. 479. DOI: 10.3389/fcell.2020.00479.

Ding Z., Sun G., Zhu Z. Antivir. Ther., 2018, vol. 23, pp. 611–615. DOI: 10.3851/IMP3235.

Wu W., Li R., Li X. et al. Viruses, 2015, vol. 8. DOI: 10.3390/v8010006.

Furushima D., Ide K., Yamada H. Molecules, 2018, vol. 23. DOI: 10.3390/molecules23071795.

Park M., Yamada H., Matsushita K. et al. J. Nutr., 2011, vol. 141, pp. 1862–1870. DOI: 10.3945/jn.110.137547.

Wink M. Medicines, 2015, vol. 2, pp. 251–286. DOI: 10.3390/medicines2030251.

Wink M. Diversity, 2020, vol. 12, p. 175. DOI: 10.3390/d12050175.

Bailey-Elkin B.A., Knaap R.C., Kikkert M., Mark B.L. J. Mol. Biol., 2017, vol. 429, pp. 3441–3470. DOI: 10.1016/j.jmb.2017.06.010.

Lee T.-W., Cherney M.M., Liu J., James, K.E., Powers J.C., Eltis L.D., James M.N. J. Mol. Biol., 2007, vol. 366, pp. 916–932. DOI: 10.1016/j.jmb.2006.11.078.

Xu Z., Peng C., Shi Y., Zhu Z., Mu K., Wang X., Zhu W. BioRxiv, 2020. DOI: 10.1101/2020.01.27.921627.

Rathnayake A.D., Zheng J., Kim Y. et al. Sci. Transl. Med., 2020, vol. 12, eabc5332. DOI: 10.1126/scitranslmed.abc5332.

Skvortsov V., Druzhilovskiy D., Veselovsky A. Biomed. Chem. Res. Methods., 2020, vol. 3, e00124. DOI: 10.18097/BMCRM00124.

Ziyavitdinov Zh.F., Abdulla R., Abdulladzhanova N.G., Salikhov Sh.I. Khimiya rastitel'nogo syr'ya, 2020, no. 1, pp. 133–140. DOI: 10.14258/jcprm.2020016316. (in Russ.).

Ryabinina Ye.I. Prikladnyye informatsionnyye aspekty meditsiny, 2009, vol. 12, no. 1, pp. 82–86. (in Russ.).

Ushanova V.M. Khimiya i khimicheskaya tekhnologiya, 2006, vol. 49 (6), pp. 82–87. (in Russ.).

Jan J.-T., Cheng T.-J.R., Juang Y.-P. et al. PNAS, 2021, vol. 118(5), e2021579118. DOI: 10.1073/pnas.2021579118.

Published
2024-09-22
How to Cite
1. Salikhov S. I., Egorov A. M., Oshchepkova Y. I., Ziyavitdinov J. F., Berdiev N. S. ANTIVIRAL ACTIVITY OF POLYPHENOLS OF THE LEAVES OF SUMACH RHUS CORIARIA L. // chemistry of plant raw material, 2024. № 3. P. 188-197. URL: http://journal.asu.ru/cw/article/view/13421.
Section
Low-molecular weight compounds