METHODS FOR ISOLATION OF WOOD HEMICELLULOSES (REVIEW)

UDC 547.455.526, 544.478

  • Valentina Sergeevna Borovkova Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University Email: bing0015@mail.ru
  • Yuriy Nikolaevich Malyar Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University Email: yumalyar@gmail.com
Keywords: plant raw materials, woody biomass, hemicelluloses, chemical isolation methods

Abstract

The general global trend of transition to a carbon-neutral economy is updating research on deep processing of renewable organic raw materials. The most popular direction in this area is the processing of lignocellulosic biomass (LCB) for the production of valuable chemical products. Hemicelluloses are an important class of plant biopolymers consisting of different monosaccharide units depending on the type of LCB and the method of their extraction. These biopolymers are receiving more attention because they exhibit a wide range of biological and pharmacological activities, such as antitumor, immunomodulatory, antimicrobial, antioxidant, anticoagulant, which makes them one of the most promising targets in the biomedical and pharmaceutical fields. However, hemicelluloses are widely distributed in nature and can be found in various sources, such as plants, microorganisms, algae and animals. This scientific article provides an overview of the structural diversity and isolation methods of hemicelluloses, the understanding of which is critical for their full potential use in various fields, including biomedical fields. A description is also provided of the dependence of the structural differences of polysaccharides on the sources of their content, and the advantages and disadvantages of various isolation procedures are described.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Valentina Sergeevna Borovkova , Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Junior Researcher

Yuriy Nikolaevich Malyar , Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Senior Researcher

References

Sun X.-F., Wang H.-h., Jing Z.-x., Mohanathas R. Carbohydrate Polymers, 2013, vol. 92(2), pp. 1357–1366. https://doi.org/10.1016/j.carbpol.2012.10.032.

Li J., Liu Z., Feng C., Liu X., Qin F., Liang C., Bian H., Qin C., Yao S. Bioresource Technology, 2021, vol. 333. 125107. https://doi.org/10.1016/j.biortech.2021.125107.

Lu Y., He Q., Fan G., Cheng Q., Song G. Green Processing and Synthesis, 2021, vol. 10(1), pp. 779–804. https://doi.org/10.1515/gps-2021-0065.

Gallina G., Alfageme E.R., Biasi P., García-Serna J. Bioresource Technology, 2018, vol. 247, pp. 980–991. https://doi.org/10.1016/j.biortech.2017.09.155.

Zhu H., Luo W., Ciesielski P.N., Fang Z., Zhu J.Y., Henriksson G., Himmel M.E., Hu L. Chemical Reviews, 2016, vol. 116(16), pp. 9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225.

Khan A., Alamry K.A., Asiri A.M. ChemistrySelect, 2021, vol. 6(2), pp. 154–176. https://doi.org/10.1002/slct.202003978.

Jayawardena B., Pandithavidana D., Sameera W. Polysaccharides in Solution: Experimental and Computational Stud-ies. 2017. https://doi.org/10.5772/intechopen.69863.

Seidl P.R., Goulart A.K. Current Opinion in Green and Sustainable Chemistry, 2016, vol. 2, pp. 48–53. https://doi.org/10.1016/j.cogsc.2016.09.003.

Huang L.Z., Ma M.G., Ji X.X., Choi S.E., Si С. Front Bioeng Biotechnol., 2021, vol. 9, 690773. https://doi.org/10.3389/fbioe.2021.690773.

Fu L., Liu S., Li S., Li Y., Ma M. Paper and Biomaterials, 2017, vol. 2(3), pp. 1–11. https://doi.org/10.26599/PBM.2017.9260015.

Kapu N., Trajano H. Biofuels, Bioproducts and Biorefining, 2014, vol. 8, pp. 857–870. https://doi.org/10.1002/bbb.1517.

Sun S.-L., Wen J.-L., Ma M.-G., Song X.-L., Sun R.-C. Carbohydrate Polymers, 2014, vol. 111, pp. 663–669. https://doi.org/10.1016/j.carbpol.2014.04.099.

Azarov V.I., Burov A.V., Obolenskaya A.V. Khimiya drevesiny i sinteticheskikh polimerov. [Chemistry of wood and synthetic polymers]. St. Petersburg, 1999, 629 p. (in Russ.).

Le Floch A., Jourdes M., Teissedre P.-L. Carbohydrate Research, 2015, vol. 417, pp. 94–102. https://doi.org/10.1016/j.carres.2015.07.003.

Kushwaha J., Singh R. Inorganic Chemistry Communications, 2023, vol. 152, 110721. https://doi.org/10.1016/j.inoche.2023.110721.

Gladyshko Y. Extraction of hemicelluloses by acid catalyzed hydrolysis: Bachelor’s Thesis. Imatra, 2011, 45 p.

Rana A.K., Mostafavi E., Alsanie W.F., Siwal S.S., Thakur V.K. Industrial Crops and Products, 2023, vol. 194. 116331. https://doi.org/10.1016/j.indcrop.2023.116331.

Thomas P., Duolikun T., Rumjit N.P., Moosavi S., Lai C.W., Bin Johan M.R., Fen L.B. Journal of the Mechanical Behavior of Biomedical Materials, 2020, vol. 110, 103884. https://doi.org/10.1016/j.jmbbm.2020.103884.

Mishra R.K., Sabu A., Tiwari S.K. Journal of Saudi Chemical Society, 2018, vol. 22(8), pp. 949–978. https://doi.org/10.1016/j.jscs.2018.02.005.

Peng F., Peng P., Xu F., Sun R.-C. Biotechnology Advances, 2012, vol. 30(4), pp. 879–903. https://doi.org/10.1016/j.biotechadv.2012.01.018.

Laine C., Harlin A., Hartman J., Hyvärinen S., Kammiovirta K., Krogerus B., Pajari H., Rautkoski H., Setälä H., Sievänen J., Uotila J., Vähä-Nissi M. Industrial Crops and Products, 2013, vol. 44, pp. 692–704. https://doi.org/10.1016/j.indcrop.2012.08.033.

Mikkonen K.S., Tenkanen M. Trends in Food Science & Technology, 2012, vol. 28(2), pp. 90–102. https://doi.org/10.1016/j.tifs.2012.06.012.

Timell T.E. Wood Science and Technology, 1967, vol. 1(1), pp. 45–70. https://doi.org/10.1007/BF00592255.

Qaseem M.F., Shaheen H., Wu A.-M. Renewable and Sustainable Energy Reviews, 2021, vol. 144, 110996. https://doi.org/10.1016/j.rser.2021.110996.

Medvedeva Ye., Babkin V., Ostroukhova L. Khimiya rastitel'nogo syr'ya, 2003, no. 1, pp. 27–37. (in Russ.).

Dion C., Chappuis E., Ripoll C. Nutr Metab., 2016, vol. 13(28), article 28. https://doi.org/10.1186/s12986-016-0086-x.

Odonmažig P., Ebringerová A., Machová E., Alföldi J. Carbohydrate Research, 1994, vol. 252, pp. 317–324. https://doi.org/10.1016/0008-6215(94)90028-0.

Ponder G.R., Richards G.N. Carbohydrate Polymers, 1997, vol. 34(4), pp. 251–261. https://doi.org/10.1016/S0144-8617(97)00099-4.

Mohnen D. Current Opinion in Plant Biology, 2008, vol. 11(3), pp. 266–277. https://doi.org/10.1016/j.pbi.2008.03.006.

Fry S.C. Biochem. Soc. Symp., 1994, vol. 60, pp. 5–14.

Kulkarni A.R., Pattathil S., Hahn M.G., York W.S., O'Neill M.A. Industrial Biotechnology, 2012, vol. 8(4), pp. 222–229. https://doi.org/10.1089/ind.2012.0014.

Dervilly-Pinel G., Tran V., Saulnier L. Carbohydrate Polymers, 2004, vol. 55(2), pp. 171–177. https://doi.org/10.1016/j.carbpol.2003.09.004.

Talebnia F., Karakashev D., Angelidaki I. Bioresour Technol., 2010, vol. 101(13), pp. 4744–4753. https://doi.org/10.1016/j.biortech.2009.11.080.

Vieira F., Santana H.E.P., Silva D.P., Ruzene D.S. BioEnergy Research, 2023, pp. 1–16. https://doi.org/10.1007/s12155-022-10563-6.

Başar İ.A., Perendeci N.A. Energy, 2021, vol. 225, 120324. https://doi.org/10.1016/j.energy.2021.120324.

Zhang Y., Virjamo V., Sobuj N., Du W., Yin Y., Nybakken L., Guo H., Julkunen-Tiitto R. Sci. Total Environ, 2018, vol. 634, pp. 150–157. https://doi.org/10.1016/j.scitotenv.2018.03.344.

Sjöström E., Alén R. Analytical methods in wood chemistry, pulping, and papermaking. Springer Science & Business Media, 1998.

Anthony A., Jonas B. Biotechnological Applications of Biomass. IntechOpen, 2020. https://doi.org/10.5772/intechopen.93607.

Guerriero G., Hausman J.F., Strauss J., Ertan H., Siddiqui K.S. Engineering in life sciences, 2016, vol. 16(1), pp. 1–16. https://doi.org/10.1002/elsc.201400196.

Loow Y.-L., Wu T.Y., Tan K.A., Lim Y.S., Siow L.F., Jahim J.M., Mohammad A.W., Teoh W.H. Journal of agricul-tural and food chemistry, 2015, vol. 63(38), pp. 8349–8363. https://doi.org/10.1021/acs.jafc.5b01813.

Chen H., Liu J., Chang X., Chen D., Xue Y., Liu P., Lin H., Han S. Fuel Processing Technology, 2017, vol. 160, pp. 196–206. https://doi.org/10.1016/j.fuproc.2016.12.007.

Singh R., Shukla A., Tiwari S., Srivastava M. Renewable and Sustainable Energy Reviews, 2014, vol. 32, pp. 713–728. https://doi.org/10.1016/j.rser.2014.01.051.

Egüés I., Sanchez C., Mondragon I., Labidi J. Bioresource Technology, 2012, vol. 103(1), pp. 239–248. https://doi.org/10.1016/j.biortech.2011.09.139.

Mohtar S.S., Tengku Malim Busu T.N.Z., Md Noor A.M., Shaari N., Mat H. Carbohydrate Polymers, 2017, vol. 166, pp. 291–299. https://doi.org/10.1016/j.carbpol.2017.02.102.

Hsu T.-C., Guo G.-L., Chen W.-H., Hwang W.-S. Bioresource Technology, 2010, vol. 101(13), pp. 4907–4913. https://doi.org/10.1016/j.biortech.2009.10.009.

Marcotullio G., Krisanti E., Giuntoli J., de Jong W. Bioresource Technology, 2011, vol. 102(10), pp. 5917–5923. https://doi.org/10.1016/j.biortech.2011.02.092.

Geddes C.C., Peterson J.J., Roslander C., Zacchi G., Mullinnix M.T., Shanmugam K.T., Ingram L.O. Bioresource Technology, 2010, vol. 101(6), pp. 1851–1857. https://doi.org/10.1016/j.biortech.2009.09.070.

Linde M., Jakobsson E.-L., Galbe M., Zacchi G. Biomass and Bioenergy, 2008, vol. 32(4), pp. 326–332. https://doi.org/10.1016/j.biombioe.2007.09.013.

Sassner P., Mårtensson C.-G., Galbe M., Zacchi G. Bioresource Technology, 2008, vol. 99(1), pp. 137–145. https://doi.org/10.1016/j.biortech.2006.11.039.

Yang B., Wyman C.E. Biofuels, 2008, vol. 2.

Amin F.R., Khalid H., Zhang H., Rahman S.U., Zhang R., Liu G., Chen C. AMB Express, 2017, vol. 7(1), p. 72. https://doi.org/10.1186/s13568-017-0375-4.

Dafchahi M.N., Acharya B. Biomass Conversion and Biorefinery, 2023. https://doi.org/10.1007/s13399-023-04383-7.

Wang J., Minami E., Kawamoto H. Journal of Wood Science, 2021, vol. 67(1), p. 3. https://doi.org/10.1186/s10086-020-01936-6.

Carvalheiro F., Duarte L.C., Girio F.M. Journal of Scientific & Industrial Research, 2008, vol. 67, pp. 849–864.

Hamelinck C.N., Hooijdonk G.V., Faaij A.P. Biomass and Bioenergy, 2005, vol. 28(4), pp. 384–410. https://doi.org/10.1016/j.biombioe.2004.09.002.

Galbe M., Zacchi G. Appl. Microbiol. Biotechnol., 2002, vol. 59(6), pp. 618–628. https://doi.org/10.1007/s00253-002-1058-9.

Cheng H.-l., Zhan H.-y., Fu S., Lucia L.A. Bioresources, 2011, vol. 6, pp. 196–206. https://doi.org/10.15376/biores.6.1.196-206.

Chen J., Jia T., Yang G., He M. Journal of Korea TAPPI, 2017, vol. 49(2), pp. 30–40. https://doi.org/10.7584/JKTAPPI.2017.04.49.2.30.

Geng W., Narron R., Jiang X., Pawlak J.J., Chang H.-m., Park S., Jameel H., Venditti R.A. Cellulose, 2019, vol. 26(5), pp. 3219–3230. https://doi.org/10.1007/s10570-019-02261-y.

Cao L., Yu I. K.M., Liu Y., Ruan X., Tsang D., Hunt A.J., Ok Y.S., Song H., Zhang S. Bioresour Technol., 2018, vol. 269, pp. 465–475. https://doi.org/10.1016/j.biortech.2018.08.065.

Mohan M., Balaji C., Goud V.V., Banerjee T. Journal of Solution Chemistry, 2015, vol. 44(3), pp. 538–557. https://doi.org/10.1007/s10953-015-0295-3.

Zhang P., Dong S.-J., Ma H.-H., Zhang B.-X., Wang Y.-F., Hu X.-M. Industrial Crops and Products, 2015, vol. 76, pp. 688–696. https://doi.org/10.1016/j.indcrop.2015.07.037.

da Costa Lopes A.M., João K.G., Bogel-Łukasik E., Roseiro L.B., Bogel-Łukasik R. Journal of Agricultural and Food Chemistry, 2013, vol. 61(33), pp. 7874–7882. https://doi.org/10.1021/jf401980p.

da Silva S.P.M., da Costa Lopes A.M., Roseiro L.B., Bogel-Łukasik R. RSC advances, 2013, vol. 3(36), pp. 16040–16050. https://doi.org/10.1039/C3RA43091J.

Yuan L., Hong P., Hu L., Yu R., Peng W., Ruan R., Xia Q., Zhang Y., Liu A.-h. BioResources, 2019, vol. 14(1), pp. 2097–2112. https://doi.org/10.15376/biores.14.1.2097-2112.

da Costa Lopes A.M., João K.G., Morais A.R.C., Bogel-Łukasik E., Bogel-Łukasik R. Sustainable Chemical Processes, 2013, vol. 1(1), p. 3. https://doi.org/10.1186/2043-7129-1-3.

Anugwom I., Mäki-Arvela P., Virtanen P., Willför S., Sjöholm R., Mikkola J.P. Carbohydrate Polymers, 2012, vol. 87(3), pp. 2005–2011. https://doi.org/10.1016/j.carbpol.2011.10.006.

Lan W., Liu C.-F., Sun R.-C. Journal of Agricultural and Food Chemistry, 2011, vol. 59(16), pp. 8691–8701. https://doi.org/10.1021/jf201508g.

da Costa Lopes A.M., Lins R.M., Rebelo R.A., Łukasik R.M. Green Chemistry, 2018, vol. 20(17), pp. 4043–4057. https://doi.org/10.1039/C8GC01763H.

Chen L., Sharifzadeh M., Mac Dowell N., Welton T., Shah N., Hallett J.P. Green Chemistry, 2014, vol. 16(6), pp. 3098–3106. https://doi.org/10.1039/C4GC00016A.

Wi S.G., Cho E.J., Lee D.-S., Lee S.J., Lee Y.J., Bae H.-J. Biotechnology for Biofuels, 2015, vol. 8(1), p. 228. DOI: 10.1186/s13068-015-0419-4.

Hu M., Chen J., Yu Y., Liu Y. Molecules, 2022, vol. 27(19). https://doi.org/10.3390/molecules27196359.

Yin D., Jing Q., AlDajani W.W., Duncan S., Tschirner U., Schilling J., Kazlauskas R.J. Bioresource Technology, 2011, vol. 102(8), pp. 5183–5192. https://doi.org/10.1016/j.biortech.2011.01.079.

Teixeira L.C., Linden J.C., Schroeder H.A. Appl. Biochem. Biotechnol., 2000, vol. 84, pp. 111–127. https://doi.org/10.1385/abab:84-86:1-9:111.

Bragatto J., Segato F., Squina F.M. Industrial Crops and Products, 2013, vol. 51, pp. 123–129. https://doi.org/10.1016/j.indcrop.2013.08.062.

An Q., Bu J., Cheng J.-R., Hu B.-B., Wang Y.-T., Zhu M.-J. International Journal of Hydrogen Energy, 2020, vol. 45(55), pp. 30211–30221. https://doi.org/10.1016/j.ijhydene.2020.08.069.

Luo M., Tian D., Shen F., Hu J., Zhang Y., Yang G., Zeng Y., Deng S., Hu Y. Biomass Conversion and Biorefinery, 2019, vol. 9(2), pp. 321–331. https://doi.org/10.1007/s13399-018-0364-0.

Duan X., Zhang C., Ju X., Li Q., Chen S., Wang J., Liu Z. Bioresource Technology, 2013, vol. 140, pp. 363–367. https://doi.org/10.1016/j.biortech.2013.04.101.

Hao X., Wen P., Wang J., Wang J., You J., Zhang J. Bioresource Technology, 2020, vol. 297, 122349. https://doi.org/10.1016/j.biortech.2019.122349.

Yang M., Xu M., Nan Y., Kuittinen S., Kamrul Hassan M., Vepsäläinen J., Xin D., Zhang J., Pappinen A. Bioresource Technology, 2018, vol. 257, pp. 113–120. https://doi.org/10.1016/j.biortech.2018.02.072.

Lee D.-S., Lee Y.-G., Song Y., Cho E.-J., Bae H.-J. Frontiers in Energy Research, 2020, vol. 8. https://doi.org/10.3389/fenrg.2020.00034.

Kuznetsov B.N., Sudakova I.G., Garyntseva N.V., Tarabanko V.E., Chesnokov N.V., Djakovitch L., Rataboul F. Topics in Catalysis, 2020, vol. 63(1), pp. 229–242. https://doi.org/10.1007/s11244-020-01244-9.

Published
2024-11-30
How to Cite
1. Borovkova V. S., Malyar Y. N. METHODS FOR ISOLATION OF WOOD HEMICELLULOSES (REVIEW) // chemistry of plant raw material, 2024. № 4. P. 46-63. URL: http://journal.asu.ru/cw/article/view/15090.
Section
Reviews