CHEMICAL ELEMENT COMPOSITION OF HYPERICUM PERFORATUM PLANTS: ELEMENTS WHICH CONCEN-TRATIONS ARE NOT REGULATED

  • Tat'yana Ivanovna Siromlya Institute of Soil Science and Agrochemistry, Siberian Branch of the Russian Academy of Sciences http://orcid.org/0000-0002-0155-2283 Email: tatiana@issa.nsc.ru
  • Yuliya Vasil'yevna Zagurskaya Federal Research Center for Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences (Institute of Human Ecology) http://orcid.org/0000-0001-8101-0945 Email: syjil@mail.ru
Keywords: St. John’s wort, Hypericum perforatum, Chemical element composition, macroelements, biogenic elements (nutrients), essential elements, root barrier coefficient

Abstract

Hypericum perforatum L. (St. John’s wort) is a popular medicinal plant, but its chemical element composition has been studied insufficiently, especially of the plants originated in the Russian Federation. The aim of the study was to examine chemical element composition of Hypericum perforatum L plants originating from the south of West Siberia and to review similar data on plants grown in other climatic zones and regions, attempting to establish chemical elements' ranges in the phytomass of the studied species. Chemical element concentrations were determined by AES in 100 samples of aboveground and 60 samples of belowground H. perforatum plant parts collected in West Siberia (Novosibirsk and Kemerovo regions, the Altai Republic). Total concentrations of various chemical elements did not differ (P≤0.05) in different samples. The aboveground plant parts were found to have very  high concentrations of K, Са, P, Si, Mg (n×103–104 mg/kg) alongside with high concentrations of Al, Fe, Na (n×102 mg/kg) and moderate concentrations of Мn, Sr, Ba, Zn, B, Ti, Cu (n×10 mg/kg), whereas such elements as Ni, Zr (n mg/kg) were found in decreased concentrations, while V, Cr, Mo, Co, Y, Ga showed low concentrations (n×10-1 mg/kg), Sc, Ве, Yb (n×10-2 mg/kg) being very low. The accumulation of Ba and Sr in plants revealed some regional peculiarities as their concentrations in plants of Siberian origin was higher than in plants of the European one. The average chemical element concentrations for a wide set of world data displayed a wider range, with extremely high or low values, as compared to the regional range of variation. The studied plants had no barriers for the uptake of Zn, Р, B, Mg, Mn and K, but for Са, Ва, Sr, Mo, Co in different samples the root barrier coefficient was higher, lower or equal to 1.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Tat'yana Ivanovna Siromlya, Institute of Soil Science and Agrochemistry, Siberian Branch of the Russian Academy of Sciences

кандидат биологических наук, старший научный сотрудник

Yuliya Vasil'yevna Zagurskaya, Federal Research Center for Coal and Coal Chemistry, Siberian Branch of the Russian Academy of Sciences (Institute of Human Ecology)

кандидат биологических наук, научный сотрудник

References

Ayan A.K., Kizilkaya R., Cirak C., Kevseroglu K. Journal of Plant Sciences, 2006, vol. 1, no. 3, pp. 182–186, DOI: 10.3923/jps.2006.182.186

Bu K., Cizdziel J.V., Reidy L. Microchemical Journal, 2013, vol. 106, pp. 244–249, DOI: 10.1016/j.microc.2012.07.011.

Derkach T., Khomenko V. Pharmacognosy Journal, 2018, vol. 10, no. 3, pp. 486–491, DOI: 10.5530/pj.2018.3.80

Filipiak-Szok А., Kurzawa М., Szłyk Е. Journal of Trace Elements in Medicine and Biology, 2015, no. 30, pp. 54–58, DOI: 10.1016/j.jtemb.2014.10.008.

Glavač N.K., Djogo S., Ražić S., Kreft S., Veber M. Archives of Industrial Hygiene and Toxicology, 2017, vol. 68, no. 3, pp. 236–244. DOI: 10.1515/aiht-2017-68-2990.

Gogoasa I., Jurca V., Alda L.M., Velciov A., Rada M., Alda S., Sirbulescu C., Bordean D.M., Gergen I. Journal of Horticulture, Forestry and Biotechnology, 2013, vol. 17, no. 4, pp. 65–67.

Gomez M.R., Soledad C., Olsina R.A., Silva M.F., Martínez L.D. Journal of Pharmaceutical and Biomedical Analysis, 2004, vol. 34, no. 3, pp. 569–576, DOI: 10.1016/s0731-7085(03)00643-5.

Gomez M.R., Cerutti S., Sombra L.L., Silva M.F., Martínez L.D. Food and Chemical Toxicology, 2007, vol. 45, no. 6, pp. 1060–1064. DOI: 10.1016/j.fct.2006.12.013.

Helmja K., Vaher M., Püssa T., Orav A., Viitak A., Levandi T., Kaljurand M. Natural Product Research, 2011, vol. 25, no. 5, pp.496–510, DOI: 10.1080/14786411003792165.

Hussain J., Bahader A., Ullah F., Rehman N.U., Khan A.L., Ullah W., Shinwari Z.K. Journal of American Science, 2009, vol. 6, no. 5, pp. 91–96.

Jurca T., Marian E., Vicas L., Gatea D. Revista de Chimie (Bucharest), 2011, vol. 62, no. 12, pp. 1154–1156.

Mihaljev Z., Zivkov-Balos M., Cupic Z., Jaksic S. Acta Pol. Pharm., 2014, vol. 71, no. 3, pp. 385–391.

Nikolova E.L., Valcheva R.D., Angelov Ch.V. Acta zool. bulg., 2018, vol. 11, pp. 163–167.

Owen J.D., Kirton S.B., Evans S.J., Stair J.L. Journal of Pharmaceutical and Biomedical Analysis, 2016, vol. 125, pp. 15–21, DOI: 10.1016/j.jpba.2016.02.054.

Pavlova D., Karadjova I., Krasteva I. Australian Journal of Botany, 2015, vol. 63, no. 2, pp. 152–158, DOI: 10.1071/BT14260.

Pytlakowska K., Kita A., Janoska P., Połowniak M., Kozik V. Food Chemistry, 2012, vol. 135, no. 2, pp. 494–501. DOI: 10.1016/j.foodchem.2012.05.002.

Radanovic D., Antic-Mladenovic S., Jakovljevic M. Acta Horticulturae, 2002, no. 576, pp. 295–301, DOI: 10.17660/actahortic.2002.576.44.

Radulescu C., Stihi C., Popescu I. V., Ionita I., Dulama I. D., Chilian A., Bancuta O. R., Chelarescu E. D., Let D. Ro-manian Reports in Physics, 2013, vol. 65, no. 1, pp. 246–260.

Ražić S., Onjia A., Dogo S., Slavković L., Popović A. Talanta, 2005, vol. 67, no. 1, pp. 233–239, DOI: 10.1016/j.talanta.2005.03.023.

Tokalıoğlu S. Food Chemistry, 2012, vol. 134, no. 4, pp. 2504–2508, DOI: 10.1016/j.foodchem.2012.04.093.

Veljković J.N., Pavlović A.N., Brcanović J.M., Mitić S.S., Tošić S.B., Pecev-Marinković E.T. Mitić M.N. Chemical Papers – Slovak Academy of Sciences, 2015, vol. 70, no. 4, pp. 488–494, DOI: 10.1515/chempap-2015-0215.

Baboshkina S.V., Puzanov A.V. Mir nauki, kul'tury, obrazovaniya, 2008, vol. 10, no. 3, pp. 14–18. (in Russ.).

Vlasov A.S., Belonogova V.D., Kuritsyn A.V. Sovremennyye problemy nauki i obrazovaniya, 2014, no. 5, URL: www.science-education.ru/119-15027. (in Russ.).

Mal'gin M.A., Puzanov A.V., Yel'chininova O.A., Goryunova T.A. Sibirskiy ekologicheskiy zhurnal, 1995, no. 6, pp. 510–514. (in Russ.).

Nozdryukhina L.N., Grinkevich N.I. Narusheniye mikroelementnogo obmena i puti yego korrektsii. [Violation of mi-croelement metabolism and ways to correct it]. Moscow, 1980, 280 p. (in Russ.).

Strekalova A.N. Obosnovaniye tekhnologii sbora lekarstvennykh rasteniy v usloviyakh sovremennoy ekologicheskoy situatsii (na primere Volgogradskoy oblasti): avtoref. dis. … kand. biol. nauk. [The rationale for the collection of medic-inal plants in the current environmental situation (on the example of the Volgograd region): author. dis. ... Cand. biol. sciences]. Volgograd, 2007, 22 p. (in Russ.).

Zagurskaya Yu.V., Bayandina I.I., Siromlya T.I., Syso A.I., Dymina Ye.V., Vronskaya O.O., Kazantseva L.M. Khimiya rastitel'nogo syr'ya, 2013, no. 4, pp. 141–150, DOI: 10.14258/jcprm.1304141 (in Russ.).

Romankevich Ye.A. Geokhimiya, 1988, no. 2, pp. 292–306. (in Russ.).

Dobrovol'skiy V.V. Osnovy biogeokhimii. [Basics of biogeochemistry]. Moscow, 2003, 400 p. (in Russ.).

Ivanov V.V. Ekologicheskaya geokhimiya elementov. Spravochnik v 6 tomakh. [Ecological geochemistry of elements. Reference in 6 volumes]. Moskva, 1994, vol. 1, 304 p. (in Russ.).

Markert B. Water, Air, and Soil Pollution, 1992, vol. 64, pp. 533–538, DOI: 10.1007/BF00483363

Syso A.I., Siromlya T.I., Myadelets M.A., Cherevko A.S. Sibirskiy ekologicheskiy zhurnal, 2016, no. 5, pp. 782–792, DOI: 10.15372/SEJ20160515 (in Russ.).

Schreck E., Foucault Y., Sarret G., Sobanska S., Cecillon L., Castrec-Rouelle M., Uzu G., Dumat C. Science of the To-tal Environment, 2012, vol. 427–428, pp. 253-262, DOI: 10.1016/j.scitotenv.2012.03.051.

Lovkova M.YA., Rabinovich A.M., Ponomareva S.M., Buzuk G.N., Sokolova S.N. Pochemu rasteniya lechat. [Why are plants treated]. Moscow, 2014, 288 p. (in Russ.).

Igamberdiyeva P.K., Danilova Ye.A., Osinskaya N.S. Mikroelementy v meditsine, 2017, no. 3, pp. 48–53, DOI: 10.19112/2413-6174-2016-17-3-48-53 (in Russ.).

Коэффициент корневого барьера растений
Published
2018-10-28
How to Cite
1. Siromlya T. I., Zagurskaya Y. V. CHEMICAL ELEMENT COMPOSITION OF HYPERICUM PERFORATUM PLANTS: ELEMENTS WHICH CONCEN-TRATIONS ARE NOT REGULATED // chemistry of plant raw material, 2018. № 2. P. 179-187. URL: http://journal.asu.ru/cw/article/view/3965.
Section
Low-molecular weight compounds