ПРИДАНИЕ ОГНЕЗАЩИТНЫХ СВОЙСТВ ЦЕЛЛЮЛОЗНЫМ ТЕКСТИЛЬНЫМ МАТЕРИАЛАМ С ПРИМЕНЕНИЕМ ЗОЛЬ - ГЕЛЬ ТЕХНОЛОГИИ
UDC 677.027.62
Abstract
The article presents studies on the use of a new composition based on sodium silicate, urea and sodium hydrogen phosphate to impart fire-retardant properties to cellulosic textile materials. The influence of the concentration of the starting components, temperature, and heat treatment time on the flame retardant properties was studied. The change in the fire retardant properties of cotton fabric is given for three heat treatment modes: at 80, 90 and 100 °C. Compared to the initial fabric, the samples treated with a flame retardant have indicators of flame retardant properties. Untreated fabric with a size of 220×170 mm when tested for flammability at an ignition time of 15 s completely burns out in 60 s. In samples treated with a flame retardant, at an ignition time of 15 s, the smoldering time is practically reduced to zero. With an increase in the concentration of the flame retardant, and the temperature of the heat treatment, the loss of material strength, breaking load, and the appearance of the fabric change slightly. Using electron scanning microscopy and energy dispersive microanalysis, it was shown that pure cotton fabric contains 68.77% carbon and 31.22% oxygen; after modification, particles of sodium – 0.02%, phosphorus – 0.04% and potassium – 0.05% are formed on the surface of the treated fabric. distributed fairly unevenly. It has been shown that in cellulosic materials modified with compositions based on sodium silicate and urea, sodium hydrogen phosphate, flame retardant properties increase. The proposed composition provides the achievement of higher fire resistance. Processing can be carried out on standard equipment of finishing enterprises without the stage of high-temperature fixation of the drug.
Downloads
Metrics
References
Alongi J., Carosio F., Kiekens P. Polymers, 2016, vol. 8(10), pp. 357–380. DOI: 10.3390/polym8100357.
Alongi J., Carosio F., Malucelli G. Polymer Degradation and Stability, 2014, vol. 106, pp. 138–149. DOI: 10.1016/j.polymdegradstab.2013.07.012.
Carosio F., Alongi J. Fibers, 2018, vol. 6, p. 36. DOI: 10.3390/fib6020036.
Shah A.U.R., Prabhakar M.N., Song J. International journal of precision engineering and manufacturing-green tech-nology, 2017, pp. 242–262. DOI: 10.1007/s40684-017-0030-1.
Salmeia K.A. Gaan S., Malucelli G. Polymers, 2016, vol. 8, p. 319. DOI: 10.3390/polym8090319.
Liu X., Zhang Q., Cheng B., Ren Y., Zhang Y., Ding C. Cellulose, 2018, vol. 25, pp. 799–811. DOI: 10.1007/s10570-017-1550-0.
Taussarova B.R., Abilkasova S.O. Fibre Chemistry, 2017, vol. 49, no. 4, pp. 242–245. DOI: 10.1007/s10692-018-9876-4.
Tausarova B.R., Abdrakhmanova G.S., Birimzhanova Z.S. Khimicheskiy zhurnal Kazakhstana, 2016, no. 2, pp. 201–207. (in Russ.).
Chan S.Y., Si L., Lee K.I., Ng P.F., Chen L., Yu B., Hu Y., Yuen R.K.K., Xin J.H., Fei B. Cellulose, 2018, vol. 25, pp. 843–857. DOI: 10.1007/s10570-017-1577-2.
Dong C., He.P., Lu Z., Wang S., Sui S., Liu J., Zhang L., Zhu P. J. Therm. Anal. Calorim., 2018, vol. 131, pp. 1079–1087. DOI: 10.1007/s10973-017-6604-x.
Jia Y., Hu Y., Zheng D., Zhang G., Zhang F., Liang Y. Cellulose, 2017, vol. 24, pp. 1159–1170. DOI: 10.1007/s10570-016-1163-z.
Rosace G., Colleoni C., Trovato V., Iacono G., Malucelli G. Cellulose, 2017, vol. 24, pp. 3095–3108. DOI: 10.1007/s10570-017-1294-x.
Kim S.J., Jang J. Fibers and Polymers, 2017, vol. 18, pp. 2328–2333. DOI: 10.1007/s12221-017-7628-3.
Grancaric A.M., Botteri L., Alongi J., Malucelli G. Cellulose, 2015, vol. 22, pp. 2825–2835. DOI: 10.1007/s10570-015-0671-6.
Lu Y., Jia Y., Zhou Y., Zou J., Zhang G., Zhang F. Carbohydrate Polymers, 2018, vol. 201, pp. 438–445. DOI: 10.1016/j.carbpol.2018.08.078.
Ismail W.N.W. J Sol-Gel Sci. Technol., 2016, vol. 78, pp. 698–707, DOI: 10.1007/s10971-016-4027-y.
Malucelli G. Coating, 2016, vol. 6, p. 33. DOI: 10.3390/coatings6030033.
Alongi J., Colleoni C., Rosace G., Malucelli G. Polymer Degradation and Stability, 2014, vol. 99, pp. 92–98. DOI: 10.1016/j.polymdegradstab.2013.11.020.
Ren Y., Zhang Y., Gu Y., Zeng Q. Progress in Organic Coatings, 2017, vol. 112, pp. 225–233. DOI: 10.1016/j.porgcoat.2017.07.022.
Colleoni C., Donelli I., Freddi G., Guido E., Migani V., Rosace G. Surface & Coatings Technology, 2013, vol. 235, pp. 192–203. DOI: 10.1016/j.surfcoat.2013.07.033.
Zhang D., Williams B.L., Shrestha S.B., Nasir Z., Becher E.M., Lofink B.J., Santos V.H., Patel H., Peng X., Sun L. Journal of Colloid and Interface Science, 2017, vol. 505, pp. 892–899. DOI: 10.1016/j.jcis.2017.06.087.
Vasiljevic J., Toms B., Jerman I. J Sol-Gel Sci Technol., 2014, vol. 70, pp. 385–399. DOI: 10.1007/s10971-014-3294-8.
Pan C., Shen L., Shang S., Xing Y. Applied Surface Science, 2012, vol. 259, pp. 110–117. DOI: 10.1016/j.apsusc.2012.07.001.
Lin D., Zeng X., Li H., Lai X. Cellulose, 2018, vol. 25, pp. 3135–3149. DOI: 10.1007/s10570-018-1748-9.
Lin D., Zeng X., Li H., Lai X., Wu T. Journal of Colloid and Interface Science, 2019, vol. 533, pp. 198–206. DOI: 10.1016/j.jcis.2018.08.06.
Zhang D., Williams B.L. Shrestha S.B. Journal of Colloid and Interface Science, 2017, vol. 505, pp. 892–899. DOI: 10.1016/j.jcis.2017.06.087.
Foksowicz-Flaczyk J., Walentowska J., Przybylak M., Maciejewski H. Surface & Coatings Technology, 2016, vol. 304, pp. 160–166. DOI: 10.1016/j.surfcoat.2016.06.062.
Li Y., Wang B., Sui X., Xie R., Xu H,, Zhang L,, Zhong Y., Mao Z. Applied Surface Science, 2018, vol. 435, pp. 1337–1343.
Irfan M., Perero S., Miola M., Maina G., Ferri A., Ferraris M., Balagna C. Cellulose, 2017, vol. 24, pp. 2331–2345. DOI: 10.1007/s10570-017-1232-y.
Rosace G., Castellano A., Trovato V., Iacono G., Malucell G. Carbohydrate Polymers, 2018, vol. 196, pp. 348–358. DOI: 10.1016/j.carbpol.2018.05.012.
Tausarova B.R., Takey Ye. Nano industriya, 2018, vol. 80, no. 1, pp. 68–73. (in Russ.).
Takey Ye., Tausarova B.R. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil'noy promyshlennosti, 2017, vol. 371, no. 5, pp. 35–39. (in Russ.).
Grancaric A.M., Colleoni G., Guido E., Botteri L., Rosace G. Progress in Organic Coatings, 2016, pp. 174–181. DOI: 10.1016/j.porgcoat.2016.10.035.
Liu Y., Pan Y,T., Wang X., Acuña P., Zhu P., Wagenknecht U., Heinrich G., Zhang X.Q., Wang R., Wang D.Y. Chemical Engineering Journal, 2016, vol. 294, pp. 167–175. DOI: 10.1016/j.cej.2016.02.080.
Patent 33177 (KZ). 2018. (in Russ.).
Shabanova N.A., Popov V.V., Sarkisov P.D. Khimiya i tekhnologiya nanodispersnykh oksidov. [Chemistry and tech-nology of nanosized oxides]. Moscow, 2006, 309 p. (in Russ.).
Copyright (c) 2019 Khimiia rastitel'nogo syr'ia (Chemistry of plant raw material)
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors, which are published in this journal, agree to the following conditions:
1. Authors retain the copyright to the work and transfer to the journal the right of the first publication along with the work, at the same time licensing it under the terms of the Creative Commons Attribution License, which allows others to distribute this work with the obligatory indication of the authorship of this work and a link to the original publication in this journal .
2. The authors retain the right to enter into separate, additional contractual agreements for the non-exclusive distribution of the version of the work published by this journal (for example, to place it in the university depository or to publish it in a book), with reference to the original publication in this journal.
3. Authors are allowed to post their work on the Internet (for example, in a university repository or on their personal website) before and during the review process of this journal, as this may lead to a productive discussion, as well as more links to this published work.