RESEARCH OF STRAW PYROLYSIS THERMAL EFFECTS FOR ESTIMATION OF POSSIBILITY ITS IMPLEMENTA-TION IN AUTOTHERMAL MODE

  • Aleksandr Vladimirovich Astafev National Research Tomsk Polytechnic University Email: ava31@tpu.ru
  • Roman Borisovich Tabakaev National Research Tomsk Polytechnic University Email: TabakaevRB@tpu.ru
  • Dias Erlanovich Musafirov National Research Tomsk Polytechnic University Email: Musaphirov@mail.ru
  • Aleksandr Sergeyevich Zavorin National Research Tomsk Polytechnic University Email: Zavorin@tpu.ru
  • Yuriy Vladimirovich Dubinin Boreskov Institute of Catalysis SB RAS Email: dubinin@catalysis.ru
  • Nikolay Alekseyevich Yazykov Boreskov Institute of Catalysis SB RAS Email: yazykov@catalysis.ru
  • Vadim Anatol'yevich Yakovlev Boreskov Institute of Catalysis SB RAS Email: yakovlev@catalysis.ru
Keywords: biomass, straw, thermal processing, pyrolysis, thermal effects, autothermality, heat costs, exothermic effect

Abstract

The aim of the work is research of straw pyrolysis in various modes, the determination of process thermal effects and estimation of straw thermal processing possibility in the autothermal mode.

Physical experiment and differential thermal analysis were used as research methods. Thermotechnical characteristics of raw materials are determined by ISO 1171:2010, GOST R 55660-2013 and a bomb calorimeter; thermal and physical characteristic are determined by the analyzer of thermal diffusivity Discovery Laser Flash DLF-1200.

In result of the work is established that thermal effects occur in the straw after heating to 200 °C. The first shows of exothermic reactions are observed when the reactor is heated to 303 °C – in this case the temperature of the straw reaches 308.8 °C. By differential thermal analysis is established that the temperature range of heat input was set from 235 to 575 °C and value of the thermal effect in this range was set 1475 kJ/kg. For this range, the heat costs for the organization of pyrolysis in the autothermal mode and the total thermal effect of the process are calculated. The calculation results showed that the maximum thermal effect (398.9 kJ/kg) can be obtained at a pyrolysis temperature of 460 °C. For these conditions, the influence of the initial straw moisture content on the autothermality of pyrolysis process was evaluated and it was established that process can be organized due to its own thermal effects when the raw material moisture is less than 30.5%.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Aleksandr Vladimirovich Astafev, National Research Tomsk Polytechnic University

аспирант инженерной школы энергетики

Roman Borisovich Tabakaev, National Research Tomsk Polytechnic University

кандидат технических наук, научный сотрудник НОЦ И.Н. Бутакова инженерной школы энергетики

Dias Erlanovich Musafirov, National Research Tomsk Polytechnic University

студент инженерной школы энергетики

Aleksandr Sergeyevich Zavorin, National Research Tomsk Polytechnic University

доктор технических наук, профессор, руководитель НОЦ И.Н. Бутакова инженерной школы энергетики

Yuriy Vladimirovich Dubinin, Boreskov Institute of Catalysis SB RAS

кандидат химических наук, научный сотрудник

Nikolay Alekseyevich Yazykov, Boreskov Institute of Catalysis SB RAS

кандидат технических наук, научный сотрудник

Vadim Anatol'yevich Yakovlev, Boreskov Institute of Catalysis SB RAS

доктор химических наук, заместитель директора по науке

References

Yermolenko G.V. et al. Spravochnik po vozobnovlyayemoy energetike yevropeyskogo soyuza. Institut energetiki NIU VSHE. [Handbook on renewable energy of the European Union. Institute of Energy HSE.]. Moscow, 2016, 96 p. (in Russ.).

Padalko S.I., Karpenko M.S. Sbornik nauchnykh trudov DonNASA. [Collection of scientific papers DonNASA]. Do-netsk, 2017, issue 1, pp. 23–30. (in Russ.).

Bodnar L.A., Tkachenko S.I., Dakhnovskaya O.V. Nauchnyye trudy vinnitskogo natsional'nogo tekhnicheskogo univer-siteta, 2012, no. 4, pp. 1–7. (in Russ.).

Vititnev YU.I., Uchitel' A.D., Kormer M.V., Lyalyuk V.P., Lyakhova I.A., Shmel'tser Ye.O. Koks i khimiya, 2013, no. 5, pp. 13–19. (in Russ.).

Tikhonov A.V., Sul'man M.G., Kosivtsov YU.YU., Lugovoy YU.V. Vestnik tverskogo gosudarstvennogo universiteta, 2015, no. 2, pp. 45–51. (in Russ.).

Kiselov V.P., Yefremov A.A., Kemenev N.V., Bugayenko M.B. Khimiya rastitel'nogo syr'ya, 2012, no. 1, pp. 205–209. (in Russ.).

Boscaglia C., Morgano M.T., Raffelt K., Leibold H., Grunwaldt J. Biomass and Bioenergy, 2018, vol. 116, pp. 236–248. DOI: 10.1016/j.biombioe.2018.06.022.

Olontsev V.F., Borisova I.A., Sazonova Ye.A. Khimiya tverdogo topliva, 2011, no. 1, pp. 47–52. (in Russ.).

Haydary J. Chemical engineering transactions, 2017, vol. 61, pp. 1465–1470. DOI: 10.3303/CET1761242.

Nowakowski D.J., Bridgwater A.V., Elliott D.C., Meier D., Wild P. Journal of Analytical and Applied Pyrolysis, 2010, vol. 88, issue 1, pp. 53–72. DOI: 10.1016/j.jaap.2010.02.009.

Golubev V.A. Obosnovaniye i sovershenstvovaniye sposobov energeticheskogo ispol'zovaniya rastitel'nykh otkhodov : dissertatsiya kandidat tekhnicheskikh nauk. [Justification and improvement of the methods of energy use of plant waste: dissertation candidate of technical sciences]. Barnaul, 2014, 157 p. (in Russ.).

Golubev V.A., Zhukov Ye.B., Simanov V.I., Fursov I.D. Polzunovskiy vestnik, 2003, no. 1, pp. 130–139. (in Russ.).

Klimenko A.V., Zorin V.M. Teploenergetika i teplotekhnika: Kniga 4 (Spravochnik). [Heat power engineering and heat engineering: Book 4 (Handbook)]. 3 ed. Moscow, 2004, 632 p. (in Russ.).

Silin V.Ye., Ryzhkov A.F., Nadir S.M.SH. Izvestiya akademii nauk. Energetika, 2011, no. 4, pp. 93–103. (in Russ.).

Faleeva J.M., Sinelshchikov V.A., Sytchev G.A., Zaichenko V.M. Journal of Physics: Conference Series, 2018, vol. 946, Article 012033, pp. 1–6. DOI: 10.1088/1742-6596/946/1/012033.

Sokolovskaya YU.G., Falyushin P.L. Prirodopol'zovaniye, 2011, no. 20, pp. 143–146. (in Russ.).

Tabakayev R.B., Kazakov A.V. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2016, vol. 327, no. 7, pp. 110–117. (in Russ.).

Park J., Lee Y., Ryu C., Park Y. Bioresource Technology, 2014, vol. 155, pp. 63–70. DOI: 10.1016/j.biortech.2013.12.084.

Milhé M., Steene L., Haube M., Commandré J.-M., Fassinou W.-F., Flamant G. Journal of Analytical and Applied Py-rolysis, 2013, vol. 103, pp. 102–111. DOI: 10.1016/j.jaap.2013.03.011.

Amutio M., Lopez G., Aguado R., Bilbao J., Olazar M. Energy Fuels, 2012, vol. 26, no. 2, pp. 1353–1362. DOI: 10.1021/ef201662x.

Vargaftik N.B. Spravochnik po teplofizicheskim svoystvam gazov i zhidkostey. [Handbook of the thermophysical proper-ties of gases and liquids]. 2 ed. Moscow, 1972, 721 p. (in Russ.).

Fedoseyev S.D., Chernyshev A.B. Polukoksovaniye i gazifikatsiya tverdogo topliva. [Pulping and gasification of solid fuels]. Moscow, 1960, 327 p. (in Russ.).

Dupont C., Chiriac R., Gauthier G., Toche F. Fuel, 2014, vol. 115, pp. 644–651. DOI: 10.1016/j.fuel.2013.07.086.

Ohliger A., Förster M., Kneer R. Fuel, 2013, vol. 104, pp. 607–613. DOI: 10.1016/j.fuel.2012.06.112.

Park W. C., Atreya A., Baum H. R. Combustion and Flame, 2010, vol. 157, issue 3, pp. 481–494. DOI: 10.1016/j.combustflame.2009.10.006.

Mikova N.M., Fetisova O.YU., Ivanov I.P., Pavlenko N.M., Chesnokov N.V. Khimiya rastitel'nogo syr'ya, 2017, no. 4, pp. 53–64. DOI: 10.14258/jcprm.2017042018. (in Russ.).

Di Blasi C. Progress in Energy and Combustion Science, 2008, vol. 34, issue 1, pp. 47–90. DOI: 10.1016/j.pecs.2006.12.001.

Bessmertnykh A.V., Zaychenko V.M., Korostina M.A., Maykov I.L. Izvestiya akademii nauk. Energetika, 2013, no. 3, pp. 153–159. (in Russ.).

Zaychenko V.M., Sychov G.A., Shevchenko A.L. Ekologicheskaya, promyshlennaya i energeticheskaya bezopasnost': Sbornik statey po materialam nauchno-prakticheskoy konferentsii. [Ecological, industrial and energy security: Collection of articles on the materials of the scientific-practical conference]. 2017, pp. 494–497. (in Russ.).

Falyushin P.L. Prirodopol'zovaniye, 2011, issue 19, pp. 204–206. (in Russ.).

Chudinov S.V. et al. Spravochnik lesokhimika. [Handbook of wood chemistry]. 2 ed. Moscow, 1987, 271 p. (in Russ.).

Vassilev S.V., Vassileva C.G., Vassilev V.S. Fuel, 2015, vol. 158, pp. 330–350. DOI: 10.1016/j.fuel.2015.05.050.

Baskov V.N., Kolos V.A., Sap'yan YU.N. Sel'skokhozyaystvennyye mashiny i tekhnologii, 2010, no. 6, pp. 13–18. (in Russ.).

Tabakayev R.B., Khaustov S.A., Cherkashina G.A., Kazakov A.V. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2015, vol. 326, no. 9, pp. 106–113. (in Russ.).

Лабораторная установка для исследования тепловой переработки
Published
2019-01-26
How to Cite
1. Astafev A. V., Tabakaev R. B., Musafirov D. E., Zavorin A. S., Dubinin Y. V., Yazykov N. A., Yakovlev V. A. RESEARCH OF STRAW PYROLYSIS THERMAL EFFECTS FOR ESTIMATION OF POSSIBILITY ITS IMPLEMENTA-TION IN AUTOTHERMAL MODE // chemistry of plant raw material, 2019. № 2. P. 271-280. URL: http://journal.asu.ru/cw/article/view/4535.
Section
Technology