BIOSORBENTS BASED ON POLYSACCHARIDES. EVALUATION OF SORPTION CAPACITY IN RELATION TO URANIUM AND THORIUM

UDC 547.992.3 + 546.841

  • Anatoliy Petrovich Karmanov Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences http://orcid.org/0000-0001-6871-5684 Email: apk0948@yandex.ru
  • Al'bert Vladimirovich Kanarsky Kazan National Research Technological University Email: alb46@yandex.ru
  • Lyudmila Sergeyevna Kocheva Institute of Geology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences Email: karko07@mail.ru
  • Zosia Al'bertovna Kanarskaya Kazan National Research Technological University Email: zosya_kanarskaya@mail.ru
  • Venera Maratovna Gematdinova Kazan National Research Technological University Email: venera.nas14@yandex.ru
  • Nikolay Ivanovich Bogdanovich Northern Arctic Federal University named after M.V. Lomonosov Email: n.bogdanovich@narfu.ru
  • Ol'ga Andreyevna Patova Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences Email: patova_olga@mail.ru
  • Natal'ya Geliyevna Rachkova Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences Email: rachkova@ib.komisc.ru
Keywords: β-glucans, sorption, radionuclide’s, uranium, thorium, polysaccharides

Abstract

Study of sorption of heavy natural radionuclide’s uranium and thorium from water by β-gluсancontaining sorbents obtained from biomass of yeast Saccharomyces Cerevisiae and bran of oat Avena sativa was carried out. It is shown that the content of mobile (water-soluble, exchange and acid-soluble) and fixed forms of uranium on investigated β-glucans vary considerably. It is found that the extent of irreversible sorption of uranium does not exceed 58.6%. For the first time shown that β-glucans have high sorption capacity in ratio of thorium. In the conditions of the experiments it was retrieved more than 99% of thorium from the water. The content of fixed form of thorium reaches 94% of the sorbed. Characteristics of surface and capillary-porous structure of samples were defined. The correlation relationships between rates of adsorption and specific surface of preparations were installed. An analysis of the relationship between sorption capacity and various properties of glucans leads to the conclusion that the most important role for the implementation of a strong adsorption of heavy radionuclides belongs to chemisorptions mechanisms, while the contribution of surface physical phenomena is not essential. It is shown that the highest strong adsorption of thorium is characterized by a sample representing the cell walls of yeast Saccharomyces cerevisiae. The findings suggest of β-glucans prospects in practical terms and their use as polyfunctional enterosorbеnts.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Anatoliy Petrovich Karmanov, Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

ведущий научный сотрудник лаборатории биохимии и биотехнологии,  доктор химических наук, профессор

Al'bert Vladimirovich Kanarsky, Kazan National Research Technological University

профессор, доктор технических наук

Lyudmila Sergeyevna Kocheva, Institute of Geology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

руководитель лаборатории химии минерального сырья, доктор химических наук

Zosia Al'bertovna Kanarskaya, Kazan National Research Technological University

доцент кафедры пищевой биотехнологии, кандидат технических наук

Venera Maratovna Gematdinova, Kazan National Research Technological University

аспирант

Nikolay Ivanovich Bogdanovich, Northern Arctic Federal University named after M.V. Lomonosov

профессор кафедры целлюлозно-бумажных и лесохимических производств, доктор технических наук

Ol'ga Andreyevna Patova, Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

заведующая лабораторией, кандидат химических наук, доцент

Natal'ya Geliyevna Rachkova, Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

кандидат биологических наук

References

Maher K., Bargar J.R., Brown G.E. Jr. Inorganic chemistry, 2012, vol. 52, no. 7, pp. 3510–3532. DOI: 10.1021/ic301686d.

Fesenko S., Fesenko J., Sanzharova N., Karpenko E., Titov I. Journal of Environmental Radioactivity, 2011, vol. 102, no. 1, pp. 8–25. DOI: 10.1016/j.jenvrad.2010.09.006.

Azzam E.I., Jay-Gerin J.P., Pain D. Cancer letters, 2012, vol. 327, no. 1–2, pp. 48–60. DOI: 10.1016/j.canlet.2011.12.012.

Ali S.H. Thesis for the requirement of master of Science – Medical Biology, University of Tromsø, 2009, pp. 13–18.

Chen J., Seviour R. Mycological research, 2007, vol. 111, no. 6, pp. 635–652. DOI: 10.1016/j.mycres.2007.02.011.

Petravić-Tominac V., Zechner-Krpan V., Grba S., Srečec S., Panjkota-Krbavčić I., Vidović L. Agriculturae Conspectus Scientificus, 2010, vol. 75, no. 4, pp. 149–158.

GOST 28178-89. Drozhzhi kormovyye. Metody ispytaniy. [GOST 28178-89. Fodder yeast. Test methods]. Moscow, 1987, 51 p. (in Russ.).

Buckeridge M.S., Rayon C., Urbanowicz B., Tine M.A.S., Carpita N.C. Cereal Chemistry, 2004, vol. 81, no. 1, pp. 115–127. DOI: 10.1094/CCHEM.2004.81.1.115.

Arar S., Alawi M. Acta Chromatographica, 2019, vol. 31, pp. 71–78.

Usov A.I., Bilan M.I., Klochkova N.G. Botanica Marina, 1995, vol. 38, pp. 43–51. DOI: 10.1515/botm.1995.38.1-6.43.

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Journal of Biologycal Chemistry, 1951, vol. 193, pp. 265–279.

York W.S., Darvill A.G., McNeil M.А., Stevenson T.T. Methods in enzymology, 1986, vol. 118, pp. 3–40. DOI: 10.1016/0076-6879(86)18062-1

Dobrolyubskaya T.S. Analiticheskaya khimiya urana. [Analytical chemistry of uranium]. Moscow, 1962, pp. 143–165. (in Russ.).

Kuznetsov V.I., Savvin V.B. Radiokhimiya, 1961, vol. 3, no. 1, pp. 79–86. (in Russ.).

Zechner-Krpan V., Petravić-Tominac V., Panjkota-Krbavčić I., Grba S., Berković K. Agriculturae Conspectus Scientifi-cus, 2009, vol. 74, no. 4, pp. 277–282.

Petravić-Tominac V., Zechner-Krpan V., Grba S., Srečec S., Panjkota-Krbavčić I., Vidović L. Agriculturae Conspectus Scientificus, 2010, vol. 75, no. 4, pp. 149–158.

Liu F., Wang Z., Liu J., Li W. International Journal of Biological Macromolecules, 2018, vol. 115, pp. 572–579. DOI: 10.1016/j.ijbiomac.2018.04.098.

Cox C.M., Dalloul R.A. Avian Biology Research, 2010, vol. 3, no. 4, pp. 171–178. DOI: 10.3184/175815511X12919999481888.

Vetvicka V., Vetvickova J. Anticancer research, 2018, vol. 38, no. 3, pp. 1327–1333.

Mebrek S., Djeghim H., Mehdi Y., Meghezzi A., Anwar S., Awadh N.A.A., Benali M. International Journal of Phy-tomedicine, 2018, vol. 10, no. 1, pp. 58–67.

Johansson L. Structural analyses of (1→3),(1→4)-β-D-glucan of oats and barley. Dissertation – EKT series 1354. University of Helsinki, Department of Applied Chemistry and Microbiology, 2006, 85 p.

Zlatkovi D., Jakovlevi D., Zekovi D., Vrvi M.M. Journal of the Serbian Chemical Society, 2003, vol. 68, pp. 805–809.

Ames L.L., Rai D. Radionuclide interactions with soil and rock media: U. S. Environmental Protection Aqency. Report EPA 520/6 78 007A, 1978, vol. 1, 306 p.

Syromyatnikov N.G., Ivanova E.I., Trofimova L.A. Radioaktivnyye elementy kak geokhimicheskiye indikatory porodo- i rudoobrazovaniya. [Radioactive elements as geochemical indicators of rock and ore formation]. Moscow, 1976, 232 p. (in Russ.).

Published
2019-12-27
How to Cite
1. Karmanov A. P., Kanarsky A. V., Kocheva L. S., Kanarskaya Z. A., Gematdinova V. M., Bogdanovich N. I., Patova O. A., Rachkova N. G. BIOSORBENTS BASED ON POLYSACCHARIDES. EVALUATION OF SORPTION CAPACITY IN RELATION TO URANIUM AND THORIUM // chemistry of plant raw material, 2019. № 4. P. 431-440. URL: http://journal.asu.ru/cw/article/view/5210.
Section
Application